Special Issue:
TOPICAL REVIEW — Iron-based high temperature superconductors
|
TOPICAL REVIEW—Iron-based high temperature superconductors |
Prev
Next
|
|
|
Optical spectroscopy studies on FeTe1-xSex and AxFe2-ySe2 (A=K, Rb, Cs):A brief overview |
Yuan Rui-Hua (原瑞花), Wang Nan-Lin (王楠林) |
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract In this short overview, we summarize the optical spectroscopy studies on iron selenide superconducting systems FeTe1-xSex and AxFe2-ySe2. We elaborate that optical spectroscopy measurements yield fruitful information about the band structure evolution across the AFM phase transition temperature, the electronic correlation effect, the superconducting pairing energy gap, the condensed carrier density or penetration depth, the inhomogeneity and the nanoscale phase separation between superconductivity and antiferromagnetism in those systems.
|
Received: 14 June 2013
Accepted manuscript online:
|
PACS:
|
74.25.Gz
|
(Optical properties)
|
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
74.62.Bf
|
(Effects of material synthesis, crystal structure, and chemical composition)
|
|
Corresponding Authors:
Wang Nan-Lin
E-mail: nlwang@iphy.ac.cn
|
Cite this article:
Yuan Rui-Hua (原瑞花), Wang Nan-Lin (王楠林) Optical spectroscopy studies on FeTe1-xSex and AxFe2-ySe2 (A=K, Rb, Cs):A brief overview 2013 Chin. Phys. B 22 087404
|
[1] |
Kamihara T W, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
|
[2] |
Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C and Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262
|
[3] |
Wu M K, Hsu F C, Yeh K W, Huang T W, Luo J Y, Wang M J, Chang H H, Chen T K, Rao S M, Mok B H, Chen C L, Huang Y L, Ke C T, Wu P M, Chang A M, Wu C T and Perng T P 2009 Physica C 469 340
|
[4] |
Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G and Felser C 2009 Nat. Mater. 8 630
|
[5] |
Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C and Xue Q K 2012 Chin. Phys. Lett. 29 037402
|
[6] |
Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M and Chen X L 2010 Phys. Rev. B 82 180520
|
[7] |
Sun L, Chen X J, Guo J, Gao P, Huang Q Z, Wang H, Fang M, Chen X, Chen G, Wu Q, Zhang C, Gu D, Dong X, Wang L, Yang K, Li A, Dai X, Mao H K and Zhao Z 2012 Nature 483 67
|
[8] |
Fang M H, Wang H D, Dong C H, Li Z J, Feng C M, Chen J and Yuan H Q 2011 Europhys. Lett. 94 27009
|
[9] |
Bao W, Huang Q Z Chen G F, Green M A, Wang D M, He J B and Qiu Y M 2011 Chin. Phys. Lett. 28 086104
|
[10] |
Zhang Y, Yang L X, Xu M, Ye Z R, Chen F, He C, Xu H C, Jiang J, Xie B P, Ying J J, Wang X F, Chen X H, Hu J P, Matsunami M, Kimura S and Feng D L 2011 Nat. Mater. 10 273
|
[11] |
Chen G F, Chen Z G, Dong J, Hu W Z, Li G, Zhang X D, Zheng P, Luo J L and Wang N L 2009 Phys. Rev. B 79 140509
|
[12] |
Hu W Z, Dong J, Li G, Li Z, Zheng P, Chen G F, Luo J L and Wang N L 2008 Phys. Rev. Lett. 101 257005
|
[13] |
Xia Y, Qian D, Wray L, Hsieh D, Chen G F, Luo J L, Wang N L and Hasan M Z 2009 Phys. Rev. Lett. 103 037002
|
[14] |
Homes A A, Wen J S, Xu Z J, Lin Z W, Li Q and Gu G D 2010 Phys. Rev. B 81 180508
|
[15] |
Miao H, Richard P, Tanaka Y, Nakayama K, Qian T, Umezawa K, Sato T, Xu Y M, Shi Y B, Xu N, Wang X P, Zhang P, Yang H B, Xu Z J, Wen J S, Gu G D, Dai X, Hu J P, Takahashi T and Ding H 2012 Phys. Rev. B 85 094506
|
[16] |
Pimenov A, Engelbrecht S, Shuvaev A M, Jin B B, Wu P H, Xu B, Cao L X and Schachinger E 2013 New J. Phys. 15 13032
|
[17] |
Moon S J, Homes C C, Akrap A, Xu Z J, Wen J S, Lin Z W, Li Q, Gu G D and Basov D N 2011 Phys. Rev. Lett. 106 217001
|
[18] |
Hancock J N, Mirzaei S I, Gillett J, Sebastian S E, Teyssier J, Viennois R, Giannini E and van der Marel D 2010 Phys. Rev. B 82 014523
|
[19] |
Tan S Y, Xia M, Zhang Y, Ye Z R, Chen F, Xie X, Peng R, Xu D F, Fan Q, Xu H, Jiang J, Zhang T, Lai X C, Xiang T, Hu J P, Xie B P and Feng D L 2013 arXiv:1301.2748
|
[20] |
Wen Y C, Wang K J, Chang H H, Luo J Y, Shen C C, Liu H L, Sun C K, Wang M J and Wu M K 2012 Phys. Rev. Lett. 108 267002
|
[21] |
Yuan R H, Kong W D, Yan L, Ding H and Wang N L 2013 Phys. Rev. B 87 144517
|
[22] |
Chen Z G, Yuan R H, Dong T, Xu G, Shi Y G, Zheng P, Luo J L, Guo J G, Chen X L and Wang N L 2011 Phys. Rev. B 83 220507
|
[23] |
Cao C and Dai J 2011 Phys. Rev. Lett. 107 056401
|
[24] |
Yan X W, Gao M, Lu Z Y and Xiang T 2011 Phys. Rev. Lett. 106 087005
|
[25] |
Yuan R H, Dong T, Song Y J, Zheng P, Chen G F, Hu J P, Li J Q and Wang N L 2012 Sci. Rep. 2 221
|
[26] |
Homes C C, Xu Z J, Wen J S and Gu G D 2012 Phys. Rev. B 85 180510
|
[27] |
Wang C N, Marsik P, Schuster R, Dubroka A, Rösle M, Niedermayer C, Varma G D, Wang A F, Chen X H, Wolf T and Bernhard C 2012 Phys. Rev. B 85 214503
|
[28] |
Yuan R H, Dong T and Wang N L 2013 Chin. Phys. Lett. 30 077403
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|