Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 046303    DOI: 10.1088/1674-1056/26/4/046303
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

The electronic, optical, and thermodynamical properties of tetragonal, monoclinic, and orthorhombic M3N4 (M=Si, Ge, Sn): A first-principles study

Dong Chen(陈东)1, Ke Cheng(程科)2, Bei-Ying Qi(齐蓓影)1
1 College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China;
2 College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610025, China
Abstract  A detailed study of the M3N4 (M=Si, Ge, Sn) nitrides in their tetragonal, monoclinic and orthorhombic phases has been performed with the plane-wave pseudo-potential method combined with the quasi-harmonic approximation, including the phononic effects. We rationalize the main puzzle, i.e., the fundamental properties of these phases are unclear, by calculating the crystal structures, density of states, and optical properties. The direct band gaps of t-Ge3N4, m-Si3N4, and o-Ge3N4 benefit the opto-electrical properties. t-, m-, and o-Si3N4 can be used as refractive materials while m-M3N4 (M=Si, Ge, Sn) are optically transparent in the visible light region. Our results improve the understanding of the detailed electronic structures of all compounds, as well as the influences of electronic structure on their stabilities. Furthermore, we find that thermodynamic quantities are sensitive to structures and, therefore, depend on various temperature and pressure conditions.
Keywords:  first-principles      density of states      optical properties      nitrides  
Received:  25 December 2016      Revised:  19 January 2017      Accepted manuscript online: 
PACS:  63.20.dk (First-principles theory)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  74.25.Gz (Optical properties)  
  81.05.Je (Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475132 and 61501392).
Corresponding Authors:  Dong Chen     E-mail:  chchendong2010@163.com

Cite this article: 

Dong Chen(陈东), Ke Cheng(程科), Bei-Ying Qi(齐蓓影) The electronic, optical, and thermodynamical properties of tetragonal, monoclinic, and orthorhombic M3N4 (M=Si, Ge, Sn): A first-principles study 2017 Chin. Phys. B 26 046303

[1] Jing J T, Feng P F, Wei S L, Zhao H and Liu Y F 2016 Appl. Surf. Sci. 387 812
[2] Hou G L, Cheng B L, Ding F, Yao M S, Hu P and Yuan F L 2015 ACS Appl. Mater. Interfaces 7 2873
[3] Lin Z X, Lin Z W, Zhang Y, Song C, Guo Y Q, Wang X, Huang X T and Huang R 2014 Acta Phys. Sin. 63 037801 (in Chinese)
[4] Kim S J, Jung S H, Kim M H, Cho S J and Park B G 2015 Appl. Phys. Lett. 106 212106
[5] Kalia R K, Nakano A, Tsuruta K and Vashishta P 1997 Phys. Rev. Lett. 78 689
[6] Wang L G, Sun J X, Yang W and Tian R G 2008 Acta Phys. Pol. A 114 807
[7] Xu B, Dong J J, McMillan P F, Shebanova O and Slamat A 2011 Phys. Rev. B 84 014113
[8] Kuwabara A, Matsunaga K and Tanaka I 2008 Phys. Rev. B 78 064104
[9] Zerr A, Miehe G, Serghiou G, Schwarz M, Kroke E, Riedel R, Fueß H, Kroll P and Boehler R 1999 Nature 400 340
[10] Kroll P 2003 J. Solid State Chem. 176 530
[11] Tatsumi K, Tanaka I, Adachi H, Oba F and Sekine T 2002 J. Am. Ceram. Soc. 85 7
[12] Caskey C M, Seabold J A, Stevanović V, Ma M, Smith W A, Ginley D S, Neale N R, Richards R M, Lany S and Zakutayev A 2015 J. Mater. Chem. C 3 1389
[13] Boyko T D, Hunt A, Zerr A and Moewes A 2013 Phys. Rev. Lett. 111 097402
[14] Ding Y C, Chen M and Wu W J 2015 J. Theor. Comput. Chem. 14 1550024
[15] Pradhan G K, Kumar A, Deb S K, Waghmare U V and Narayana C 2010 Phys. Rev. B 82 144112
[16] Gao Y H, Bando Y and Sato T 2001 Appl. Phys. Lett. 79 4565
[17] Zhang C, Sun J X, Tian R G and Zou S Y 2007 Acta Phys. Sin. 56 5969 (in Chinese)
[18] Gao S P, Cai G H and Xu Y 2013 Comput. Mater. Sci. 67 292
[19] Luo Y S, Cang Y P and Chen D 2014 Comput. Condens. Matter 1 1
[20] Yu B H and Chen D 2013 J. Alloys Compd. 581 747
[21] Cui L, Hu M, Wang Q Q, Xu B, Yu D L, Liu Z Y and He J L 2015 J. Solid State Chem. 228 20
[22] Wang Y C, Lv J, Zhu L and Ma Y W 2010 Phys. Rev. B 82 094116
[23] Cang Y P, Lian S B, Yang H M and Chen D 2016 Chin. Phys. Lett. 33 066301
[24] Cang Y P, Chen D, Yang F and Yang H M 2016 Chem. J. Chin. Univ. 37 674
[25] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[26] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[27] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[28] Vanderbilt D 1990 Phys. Rev. B 41 7892
[29] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[30] Pfrommer B G, Côté M, Louie S G and Cohen M L 1997 J. Comput. Phys. 131 233
[31] Otero-de-la-Roza A, Abbasi-Pérez D and Luaña V 2011 Comput. Phys. Commun. 182 2232
[32] Blanco M A, Francisco E and Luana V 2004 Comput. Phys. Commun. 158 57
[33] Peng S M 2015 J. Nucl. Mater. 464 230
[34] Chen D and Yu B H 2013 Chin. Phys. B 22 023104
[35] Yu B H and Chen D 2012 Chin. Phys. B 21 060508
[36] Sevik C and Bulutay C 2007 J. Mater. Sci. 42 6555
[37] Terki R, Bertrand G and Aourag H 2005 Microelectron. Eng. 81 514
[38] Wooten F 1972 Optical Properties of Solides (New York: Academic Press)
[39] Xu Y N and Ching W Y 1995 Phys. Rev. B 51 17379
[40] Hu C H, Yin X H, Wang D H, Zhong Y, Zhou H Y and Rao G H 2016 Chin. Phys. B 25 067801
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[4] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[5] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[6] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[7] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[10] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[11] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[12] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[13] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[14] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[15] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
No Suggested Reading articles found!