Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 047102    DOI: 10.1088/1674-1056/27/4/047102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The effect of replacing pnictogen elements on the physical properties of SrMg2X2 (X=N, P, As, Sb, Bi) Zintl compounds

G Murtaza1, Abdul Ahad Khan2, M Yaseen3, A Laref4, Naeem Ullah5, Inayat ur Rahman1
1. Materials Modelling Labortary, Department of Physics, Islamia College University, Peshawar, Pakistan;
2. Department of Physics, University of the Peshawar, KP, Pakistan;
3. Department of Physics, University of Agriculture, Faisalabad 38040, Pakistan;
4. Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, King Saudi Arabia;
5. Department of Physics, City University of Hong Kong, Hong Kong 999077, China
Abstract  The effect of replacing the anion from N to Bi down the group in the periodic table is investigated on SrMg2X2 (X=N, P, As, Sb, Bi). A full potential linearized augmented plane wave plus local orbitals method is used along with different exchange-correlation potentials to obtain the lattice constants, phonons, electronic, and optical properties of the SrMg2X2 (X=N, P, As, Sb, Bi) Zintl compounds. A good agreement is achieved and our calculations are validated by previous experimental and theoretical data. All compounds have shown stable dynamical behavior with gamma centered longitudinal response having no imaginary frequencies. Electronic band structures reveal the semiconducting nature of the compounds. The Pnictogen (X)-p state contributed mainly in the valence band and the Sr-d state forms the conduction of the compounds. Relative charge transfer and low overlapping of the atomic densities indicates the preferable ionic bonding character of these materials. In the optical properties, real and imaginary parts of dielectric function, complex refractive index, birefringence, reflectivity, and optical conductivity are calculated. These compounds can be utilized in the optical and optoelectronic devices.
Keywords:  Zintl compounds      band structure      optical response  
Received:  13 December 2017      Revised:  17 January 2018      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.20.At (Surface states, band structure, electron density of states)  
  74.25.Gz (Optical properties)  
Fund: Project supported by a grant from the "Research Center of Female Scientific and Medical Colleges", the Deanship of Scientific Research, King Saud University. Yaseen M is thankful to Higher Education Commission (HEC), Pakistan for funding (Grant No. 6410/Punjab/NRPU/R&D/HEC/2016), and also this study is made possible by the support of the United States Government and the American people through the United States Agency for International Development (USAID). The contents are the sole responsibility of National University of Sciences and Technology and do not necessarily reflect the views of USAID or the United States Government.
Corresponding Authors:  G Murtaza     E-mail:  murtaza@icp.edu.pk

Cite this article: 

G Murtaza, Abdul Ahad Khan, M Yaseen, A Laref, Naeem Ullah, Inayat ur Rahman The effect of replacing pnictogen elements on the physical properties of SrMg2X2 (X=N, P, As, Sb, Bi) Zintl compounds 2018 Chin. Phys. B 27 047102

[1] Orhan E, Jobic S, Brec R, Marchand R and Saillard J Y 2002 J. Mater. Chem. 12 2475
[2] Prots Y, Niewa R, Schnelle W and Kniep R 2002 Z. Anorg. Allg. Chem. 628 1590
[3] Reckeweg O and DiSalvo F 2001 Z. Anorg. Allg. Chem. 627 371
[4] Li G, Aydemir U, Wood M, An Q, Goddard W A, Zhai P, Zhang Q and Snyder G J 2017 J. Mater. Chem. A 5 9050
[5] Haddadi K, Bouhemadou A and Bin-Omran S 2012 Comput. Mater. Sci. 53 204
[6] Singh D J and Parker D 2013 J. Appl. Phys. 114 143703
[7] Sun J and Singh D J 2017 J. Mater. Chem. A 5 8499
[8] Deller K and Eisenmann B 1977 Z. Naturforsch. B Chem. Sci. 32 612
[9] Andersen O K 1975 Phys. Rev. B 42 3060
[10] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2k, an Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Austria
[11] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[12] Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
[13] Baroni S, de Gironcoli, Corso S D and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[14] Gonze X and Lee C 1997 Phys. Rev. B 55 10355
[15] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, et al. 2009 J. Phys.:Condens. Matter 21 395502
[16] Seddik T, Uǧur G, Khenata R, Uǧur S, Soyalp F, Murtaza G, Rai D P, Bouhemadou A and Omran S B 2016 Chin. Phys. B 25 107801
[17] Penn D R 1962 Phys. Rev. 128 2093
[1] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[2] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[3] Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5
Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰). Chin. Phys. B, 2022, 31(5): 057403.
[4] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[5] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[6] Asymmetrical photonic spin Hall effect based on dielectric metasurfaces
Guangzhou Geng(耿广州), Ruhao Pan(潘如豪), Wei Zhu(朱维), and Junjie Li(李俊杰). Chin. Phys. B, 2022, 31(12): 124207.
[7] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[8] Observation of multiple charge density wave phases in epitaxial monolayer 1T-VSe2 film
Junyu Zong(宗君宇), Yang Xie(谢阳), Qinghao Meng(孟庆豪), Qichao Tian(田启超), Wang Chen(陈望), Xuedong Xie(谢学栋), Shaoen Jin(靳少恩), Yongheng Zhang(张永衡), Li Wang(王利), Wei Ren(任伟), Jian Shen(沈健), Aixi Chen(陈爱喜), Pengdong Wang(王鹏栋), Fang-Sen Li(李坊森), Zhaoyang Dong(董召阳), Can Wang(王灿), Jian-Xin Li(李建新), and Yi Zhang(张翼). Chin. Phys. B, 2022, 31(10): 107301.
[9] Lattice plasmon mode excitation via near-field coupling
Yun Lin(林蕴), Shuo Shen(申烁), Xiang Gao(高祥), and Liancheng Wang(汪炼成). Chin. Phys. B, 2022, 31(1): 014214.
[10] Linear and nonlinear optical response of g-C3N4-based quantum dots
Jing-Zhi Zhang(张竞之) and Hong Zhang(张红). Chin. Phys. B, 2021, 30(7): 077802.
[11] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[12] Topological Dirac surface states in ternary compounds GeBi2Te4, SnBi2Te4 and Sn0.571Bi2.286Se4
Yunlong Li(李云龙), Chaozhi Huang(黄超之), Guohua Wang(王国华), Jiayuan Hu(胡佳元), Shaofeng Duan(段绍峰), Chenhang Xu(徐晨航), Qi Lu(卢琦), Qiang Jing(景强), Wentao Zhang(张文涛), and Dong Qian(钱冬). Chin. Phys. B, 2021, 30(12): 127901.
[13] Molecular beam epitaxy growth of monolayer hexagonal MnTe2 on Si(111) substrate
S Lu(卢帅), K Peng(彭坤), P D Wang(王鹏栋), A X Chen(陈爱喜), W Ren(任伟), X W Fang(方鑫伟), Y Wu(伍莹), Z Y Li(李治云), H F Li(李慧芳), F Y Cheng(程飞宇), K L Xiong(熊康林), J Y Yang(杨继勇), J Z Wang(王俊忠), S A Ding(丁孙安), Y P Jiang(蒋烨平), L Wang(王利), Q Li(李青), F S Li(李坊森), and L F Chi(迟力峰). Chin. Phys. B, 2021, 30(12): 126804.
[14] Simulations of monolayer SiC transistors with metallic 1T-phase MoS2 contact for high performance application
Hai-Qing Xie(谢海情), Dan Wu(伍丹), Xiao-Qing Deng(邓小清), Zhi-Qiang Fan(范志强), Wu-Xing Zhou(周五星), Chang-Qing Xiang(向长青), and Yue-Yang Liu(刘岳阳). Chin. Phys. B, 2021, 30(11): 117102.
[15] Metal-insulator phase transition and topology in a three-component system
Shujie Cheng(成书杰) and Xianlong Gao(高先龙). Chin. Phys. B, 2021, 30(1): 010302.
No Suggested Reading articles found!