Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 027103    DOI: 10.1088/1674-1056/25/2/027103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Evaluation of electrical and optical characteristics of ZnO/CdS/CIS thin film solar cell

Hadi Zarei and Rasoul Malekfar
Department of Physics, Tarbiat Modares University, P. O. Box 14115-175, Tehran, I. R. Iran
Abstract  In this study, device modeling and simulation are conducted to explain the effects of each layer thickness and temperature on the performance of ZnO/CdS/CIS thin film solar cells. Also, the thicknesses of the CIS and CdS absorber layers are considered in this work theoretically and experimentally. The calculations of solar cell performances are based on the solutions of the well-known three coupling equations: the continuity equation for holes and electrons and the Poisson equation. Our simulated results show that the efficiency increases by reducing the CdS thickness. Increasing the CIS thickness can increase the efficiency but it needs more materials. The efficiency is more than 19% for a CIS layer with a thickness of 2 μm. CIS nanoparticles are prepared via the polyol route and purified through centrifugation and precipitation processes. Then nanoparticles are dispersed to obtain stable inks that could be directly used for thin-film deposition via spin coating. We also obtain x-ray diffraction (XRD) peak intensities and absorption spectra for CIS experimentally. Finally, absorption spectra for the CdS window layer in several deposition times are investigated experimentally.
Keywords:  CIGS solar cell      thin film      efficiency      CdS      XRD  
Received:  14 July 2015      Revised:  01 October 2015      Accepted manuscript online: 
PACS:  71.20.Nr (Semiconductor compounds)  
  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  74.20.Pq (Electronic structure calculations)  
  74.25.Gz (Optical properties)  
Corresponding Authors:  Hadi Zarei     E-mail:  hadi.zarei@modares.ac.ir

Cite this article: 

Hadi Zarei, Rasoul Malekfar Evaluation of electrical and optical characteristics of ZnO/CdS/CIS thin film solar cell 2016 Chin. Phys. B 25 027103

[1] Green M A, Emery K, Hishikawa Y, Warta W and Dunlop E D 2015 Progress in Photovoltaics: Research and Applications 23 1
[2] Minemoto T, Matsui T, Takakura H, Hamakawa Y, Negami T, Hashimoto Y, Uenoyama T and Kitagawa M 2001 Solar Energy Materials and Solar Cells 67 83
[3] Schmid D, Ruckh M and Schock H W 1994 Conference Record of the Twenty Fourth IEEE Photovoltaic Specialists Conference-1994, 1994 IEEE First World Conference, pp. 198-201
[4] Repins I, Contreras M A, Egaas B, DeHart C, Scharf J, Perkins C L, To B and Noufi R 2008 Progress in Photovoltaics: Research and Applications 16 235
[5] Benmir A and Aida M 2013 Energy Procedia 36 618
[6] Xu C, Zhang H, Parry J, Perera S, Long G and Zeng H 2013 Solar Energy Materials and Solar Cells 117 357
[7] Hagiwara Y, Nakada T and Kunioka A 2001 Solar Energy Materials and Solar Cells 67 267
[8] Naghavi N, Spiering S, Powalla M, Cavana B and Lincot D 2003 Progress in Photovoltaics: Research and Applications 11 437
[9] Islam M, Ishizuka S, Yamada A, Sakurai K, Niki S, Sakurai T and Akimoto K 2009 Solar Energy Materials and Solar Cells 93 970
[10] Heidarzadeh H, Rostami A, Matloub S, Dolatyari M and Rostami G 2015 Appl. Opt. 54 3591
[11] Heidarzadeh H, Dolatyari M, Rostami G and Rostami A 2015 Springer Proceedings in Physics, pp. 61-67
[12] Lee K, Lee J, Mazor B A and Forrest S R 2015 Light: Science & Applications 4 e288
[13] Nakada T, Mizutani M, Hagiwara Y and Kunioka A 2001 Solar Energy Materials and Solar Cells 67 255
[14] Heidarzadeh H, Baghban H, Rasooli H, Dolatyari M and Rostami A 2014 Optik-International Journal for Light and Electron Optics 125 1292
[15] He Z, Zhong C, Huang X, Wong W Y, Wu H, Chen L, Su S and Cao Y 2011 Adv. Mater. 23 4636
[16] Dobson K D, Visoly-Fisher I, Hodes G and Cahen 2000 Solar Energy Materials and Solar Cells 62 295
[17] Weil B D, Connor S T and Cui Y 2010 J. Am. Chem. Soc. 132 6642
[18] Scheer R, Walter T, Schock H W, Fearheiley M L and Lewerenz H 1993 Appl. Phys. Lett. 63 3294
[19] Tang J, Hinds S, Kelly S O and Sargent E H 2008 Chem. Mater. 20 6906
[20] Panthani M G, Akhavan V, Goodfellow B, Schmidtke J P, Dunn L, Dodabalapur A, Barbara P and Korgel B A 2008 J. Am. Chem. Soc. 130 16770
[21] Müller J, Nowoczin J and Schmitt H 2006 Thin Solid Films 496 364
[22] Touafek N, Aida M and Mahamdi R 2012 Am. J. Mater. Sci. 2 160
[23] Bouraiou A, Aida M, Tomasella E and Attaf N 2009 J. Mater. Sci. 44 1241
[24] Jeon C W, Cheon T, Kim H, Kwon M S and Kim S H 2015 J. Alloys Compd. 644 317
[25] Lee S, Lee E S, Kim T Y, Cho J S, Eo Y J, Yun J H and Cho A 2015 Solar Energy Materials and Solar Cells 141 299
[26] Jarzembowski E, Maiberg M, Obereigner F, Kaufmann K, Krause S and Scheer R 2015 Thin Solid Films 576 75
[27] Lundberg O, Bodegård M, Malmström J and Stolt L 2003 Progress in Photovoltaics: Research and Applications 11 77
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[3] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[4] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[5] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[6] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[7] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[8] A 658-W VCSEL-pumped rod laser module with 52.6% optical efficiency
Xue-Peng Li(李雪鹏), Jing Yang(杨晶), Meng-Shuo Zhang(张梦硕), Tian-Li Yang(杨天利), Xiao-Jun Wang(王小军), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084207.
[9] Large aperture phase-coded diffractive lens for achromatic and 16° field-of-view imaging with high efficiency
Gu Ma(马顾), Peng-Lei Zheng(郑鹏磊), Zheng-Wen Hu(胡正文), Suo-Dong Ma(马锁冬), Feng Xu(许峰), Dong-Lin Pu(浦东林), and Qin-Hua Wang(王钦华). Chin. Phys. B, 2022, 31(7): 074210.
[10] Analysis of identification methods of key nodes in transportation network
Qiang Lai(赖强) and Hong-Hao Zhang(张宏昊). Chin. Phys. B, 2022, 31(6): 068905.
[11] Structure, phase evolution and properties of Ta films deposited using hybrid high-power pulsed and DC magnetron co-sputtering
Min Huang(黄敏), Yan-Song Liu(刘艳松), Zhi-Bing He(何智兵), and Yong Yi(易勇). Chin. Phys. B, 2022, 31(6): 066101.
[12] Efficient quantum private comparison protocol utilizing single photons and rotational encryption
Tian-Yi Kou(寇天翊), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(6): 060307.
[13] Advantage of populous countries in the trends of innovation efficiency
Dan-Dan Hu(胡淡淡), Xue-Jin Fang(方学进), and Xiao-Pu Han(韩筱璞). Chin. Phys. B, 2022, 31(6): 068903.
[14] Efficient quantum private comparison protocol based on one direction discrete quantum walks on the circle
Jv-Jie Wang(王莒杰), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(5): 050308.
[15] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
No Suggested Reading articles found!