Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 087403    DOI: 10.1088/1674-1056/22/8/087403
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Superconducting properties of barium in three phases under high pressure from first principles

Zhou Da-Wei (周大伟)a, Pu Chun-Ying (濮春英)a, Song Hai-Zhen (宋海珍)a, Li Gen-Quan (李根全)a, Song Jin-Fan (宋金璠)a, Lu Cheng (卢成)a, Bao Gang (包刚)b
a College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China;
b College of Physics and Electronic Information, Inner Mongolia University for the Nationalities, Tongliao 028043, China
Abstract  Electron-phonon coupling (EPC) in the three high-pressure phases of Ba is investigated using a pseudopotential plane-wave method based on density functional perturbation theory. The calculated values of superconducting critical temperature Tc of Ba-I and Ba-II under pressure are consistent well with the trends observed experimentally. Moreover, Ba-V is found to be superconducting with a maximum Tc exceeding 7.8 K at 45 GPa. With the increase of pressure, the values of Tc increase in Ba I and Ba-II but the value of Tc decreases in Ba-V. For Ba-I at pressures below 2 GPa, the increases of logarithmic average frequency ωlog and electron-phonon coupling parameters λ both contribute to the enhancement of Tc. For all the three phases at pressures above 2 GPa, Tc is found to be primarily determined by λ. Further investigation reveals that for all the three phases, the change in λ with pressure can be explained mainly by change in the phonon frequency. Thus for Ba-II and Ba-V, although they exhibit completely different superconducting behaviors, their superconductivities have the same origin; the pressure dependence of Tc is determined finally by the pressure dependence of phonon frequency.
Keywords:  high-pressure phase transition      superconductivity      lattice dynamics  
Received:  30 November 2012      Revised:  01 January 2013      Accepted manuscript online: 
PACS:  74.25.Dw (Superconductivity phase diagrams)  
  74.62.Fj (Effects of pressure)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11247222, 11164020, and 51001042), the Nanyang Normal University Science Foundation, China (Grant Nos. ZX2012018, ZX2010011, and nytc2006k102), the Natural Science Foundation of Science and Technology Department of Henan Province, China (Grant Nos. 112102210019 and 112300410121), the Natural Science Foundation of Education Department of Henan Province, China (Grant Nos. 2011B140015 and 2010B140012), the Higher Education Reform of Henan Province, China (Grant Nos. 2012SJGLX233), the China Postdoctoral Science Foundation (Grant No. 20110491317), and the Young Core Instructor Foundation from the Education Department of Henan Province, China (Grant No. 2012GGJS-152).
Corresponding Authors:  Zhou Da-Wei     E-mail:  zhoudawei@nynu.edu.cn

Cite this article: 

Zhou Da-Wei (周大伟), Pu Chun-Ying (濮春英), Song Hai-Zhen (宋海珍), Li Gen-Quan (李根全), Song Jin-Fan (宋金璠), Lu Cheng (卢成), Bao Gang (包刚) Superconducting properties of barium in three phases under high pressure from first principles 2013 Chin. Phys. B 22 087403

[1] Dunn K J and Bundy F P 1981 Phys. Rev. B 24 1643
[2] Okada S, Shimizu K, Kobayashi T C, Amaya K and Endo S 1996 J. Phys. Soc. Jpn. 65 1924
[3] Dunn K J and Bundy F P 1982 Phys. Rev. B 25 194
[4] Maksimov E G, Magnitskaya M V and Fortov V E 2007 Phys. Usp. 48 761
[5] Skriver H L 1982 Phys. Rev. Lett. 49 1768
[6] Olijnyk H and Holzapfel W B 1984 Phys. Lett. A 100 191
[7] Barnett J D, Bennion R B and Hall H T 1963 Science 141 534
[8] Nelmes R, Allan D, McMahon M and Belmonte S 1999 Phys. Rev. Lett. 83 4081
[9] Reed S K and Ackland G J 2000 Phys. Rev. Lett. 84 5580
[10] Kenichi T 1994 Phys. Rev. B 50 16238
[11] Yabuuchi T, Matsuoka T, Nakamoto Y and Shimizu K 2006 J. Phys. Soc. Jpn. 75 083703
[12] Moodenbaugh A R and Wittig J 1973 J. Low. Temp. Phys. 10 203
[13] Jona F and Marcus P M 2006 Europhys. Lett. 74 83
[14] Olijnyk H, Nakano S and Takemura K 2007 Solid State Commun. 142 41
[15] Loa I, Nelmes R J, Lundegaard L F and McMahon M 2012 Nat. Mater. 11 627
[16] Jona F and Marcus P M 2006 J. Phys.: Condens. Matter 18 4623
[17] Zeng W S, Heine V and Jepsen O 1999 J. Phys.: Condens. Matter 9 3489
[18] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175
[19] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502
[20] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[21] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993
[22] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[23] Vanderbilt D 1990 Phys. Rev. B 41 7892
[24] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905
[25] McMillan W L 1968 Phys. Rev. 167 331
[26] Suzuki N and Otani M 2007 J. Phys.: Condens. Matter 19 125206
[27] Yao Y S, Tse J S, Song Z, Klug D D, Sun J and Le Page Y 2008 Phys. Rev. B 78 054506
[28] Buzea C and Robbie K 2005 Supercond. Sci. Technol. 18 R1
[29] Tian F B, Wang J H, He Z, Ma Y M, Wang L C, Cui T, Chen C B, Liu B B and Zou G T 2008 Phys. Rev. B 78 235431
[30] Jin X L, Meng X, He Z, Ma Y M, Liu B B, Cui T, Zou G T and Mao H K 2010Proc. Natl. Acad. Sci. USA 107 9969
[31] Gao G Y, Oganov A R, Bergara A, Martinez-Canales M, Cui T, Iitaka T, Ma Y M and Zou G T 2008 Phys. Rev. Lett. 101 107002
[32] Li Y W, Gao G Y, Xie Y, Ma Y M, Cui T and Zou G T 2010 Proc. Natl. Acad. Sci. USA 107 15708
[33] Xu Y, Tse J S, Oganov A R, Cui T, Wang H, Ma Y and Zou G 2009 Phys. Rev. B 79 144110
[34] Gao G Y, Wang H, Bergara A, Li Y W, Liu G T and Ma Y M 2011 Phys. Rev. B 84 064118
[35] Chan K T, Malone B D and Cohen M L 2012 Phys. Rev. B 86 094515
[36] Wang Y C, Lü J, Ma Y M, Cui T and Zou G T 2009 Phys. Rev. B 80 092505
[37] Xie Y, Oganov A R and Ma Y M 2010 Phys. Rev. Lett. 104 177005
[38] Zhang L J, Xie Y, Cui T, Li Y, He Z, Ma Y M and Zou G T 2006 Phys. Rev. B 74 184519
[39] Duan D F, Jin X, Ma Y M, Cui T, Liu B B and Zou G T 2009 Phys. Rev. B 79 064518
[40] Zhou D W, Lu C, Li G Q, Song J F, Song Y L and Bao G 2012 Acta Phys. Sin. 61 146301 (in Chinese)
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[3] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[4] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[5] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[6] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[7] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[8] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[9] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[10] Superconductivity in CuIr2-xAlxTe4 telluride chalcogenides
Dong Yan(严冬), Lingyong Zeng(曾令勇), Yijie Zeng(曾宜杰), Yishi Lin(林一石), Junjie Yin(殷俊杰), Meng Wang(王猛), Yihua Wang(王熠华), Daoxin Yao(姚道新), and Huixia Luo(罗惠霞). Chin. Phys. B, 2022, 31(3): 037406.
[11] Topological superconductivity in Janus monolayer transition metal dichalcogenides
Xian-Dong Li(李现东), Zuo-Dong Yu(余作东), Wei-Peng Chen(陈伟鹏), and Chang-De Gong(龚昌德). Chin. Phys. B, 2022, 31(11): 110304.
[12] Synthesis and properties of La1-xSrxNiO3 and La1-xSrxNiO2
Mengwu Huo(霍梦五), Zengjia Liu(刘增家), Hualei Sun(孙华蕾), Lisi Li(李历斯), Hui Lui(刘晖), Chaoxin Huang(黄潮欣), Feixiang Liang(梁飞翔), Bing Shen(沈冰), and Meng Wang(王猛). Chin. Phys. B, 2022, 31(10): 107401.
[13] Recent advances in quasi-2D superconductors via organic molecule intercalation
Mengzhu Shi(石孟竹), Baolei Kang(康宝蕾), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2022, 31(10): 107403.
[14] Synthesis and superconductivity in yttrium superhydrides under high pressure
Yingying Wang(王莹莹), Kui Wang(王奎), Yao Sun(孙尧), Liang Ma(马良), Yanchao Wang(王彦超), Bo Zou(邹勃), Guangtao Liu(刘广韬), Mi Zhou(周密), and Hongbo Wang(王洪波). Chin. Phys. B, 2022, 31(10): 106201.
[15] Superconductivity in octagraphene
Jun Li(李军) and Dao-Xin Yao(姚道新). Chin. Phys. B, 2022, 31(1): 017403.
No Suggested Reading articles found!