Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 087801    DOI: 10.1088/1674-1056/26/8/087801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Shape controllable synthesis and enhanced upconversion photoluminescence of β-NaGdF4:Yb3+, Er3+ nanocrystals by introducing Mg2+

Yong-Xin Yang(杨永馨)1,2, Zheng Xu(徐征)1,2, Su-Ling Zhao(赵谡玲)1,2, Zhi-Qin Liang(梁志琴)1,2, Wei Zhu(朱薇)1,2, Jun-Jie Zhang(张俊杰)1,2
1 Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China;
2 Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
Abstract  

Different concentrations of Mg2+-doped hexagonal phase NaGdF4:Yb3+, Er3+ nanocrystals (NCs) were synthesized by a modified solvothermal method. Successful codoping of Mg2+ ions in upconversion nanoparticles (UCNPs) was supported by XRD, SEM, EDS, and PL analyses. The effects of Mg2+ doping on the morphology and the intensity of the upconversion (UC) emission were discussed in detail. It turned out that with the concentration of Mg2+ increasing, the morphology of the nanoparticles turn to change gradually and the UC emission was increasing gradually as well. Notably the UC fluorescence intensities of Er3+ were gradually improved owing to the codoped Mg2+ and then achieved a maximum level as the concentration of Mg2+ ions was 60 mol% from the amendment of the crystal structure of β -NaGdF4:Yb3+, Er3+ nanoparticles. Moreover, the UC luminescence properties of the rare-earth (Yb3+, Er3+ ions codoped NaGdF4 nanocrystals were investigated in detail under 980-nm excitation.

Keywords:  NaGdF4:Yb3+/Er3+ nanoparticles      Mg2+ ions      morphology      upconversion photoluminescence  
Received:  16 February 2017      Revised:  08 May 2017      Accepted manuscript online: 
PACS:  78.40.-q (Absorption and reflection spectra: visible and ultraviolet)  
  74.25.Gz (Optical properties)  
  42.70.-a (Optical materials)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
Fund: 

Project supported by the National High Technology Research and Development Program of China (Grant No. 2013AA032205), the Key Project of Beijing Scientific Committee, China (Grant No. D161100003416001), the Fundamental Research Funds for the Central Universities, China (Grant No. 2016JBM066), and the National Natural Science Foundation of China (Grant Nos. 51272022 and 11474018).

Corresponding Authors:  Zheng Xu     E-mail:  zhengxu@bjtu.edu.cn
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Yong-Xin Yang(杨永馨), Zheng Xu(徐征), Su-Ling Zhao(赵谡玲), Zhi-Qin Liang(梁志琴), Wei Zhu(朱薇), Jun-Jie Zhang(张俊杰) Shape controllable synthesis and enhanced upconversion photoluminescence of β-NaGdF4:Yb3+, Er3+ nanocrystals by introducing Mg2+ 2017 Chin. Phys. B 26 087801

[1] Wang F, Han Y, Lim C S, Lu Y H, Wang J, Xu J, Chen H Y, Zhang C, Hong M H and Liu X G 2010 Nature 463 1061
[2] Gao W, Dong J, Wang R B, Wang Z J and Zheng H R 2016 Acta Phys. Sin. 65 084205 (in Chinese)
[3] Zhao C, Meng Q Y and Sun W J 2015 Acta Phys. Sin. 64 107803 (in Chinese)
[4] Dai L, Liu C R, Tan C, Yan Z H and Xu Y H 2017 Chin. Phys. B 26 044207
[5] Du X Y, Wang X F, Meng L, Bu Y Y and Yan X H 2017 Nanoscale Res. Lett. 12 163
[6] Dai G T, Zhong Z Q, Wu X F, Zhan S P, Hu S G, Hu P, Hu J S, Wu S B, Han J B and Liu Y X 2017 Nanotechnology 28 155702
[7] Dong B, Xu S, Sun J, Bi S, Li D, Bai X, Wang Y, Wang L P and Song H W 2011 J. Mater. Chem. 21 6193
[8] Wang F, Banerjee D, Liu Y S, Chen X Y and Liu X Q 2010 Analyst. 135 1839
[9] Ding M Y, Chen D Q, Wan Z Y, Zhou Y, Zhong J S, Xi J H and Ji Z Q 2015 J. Mater. Chem. C 3 5372
[10] Liu J, Chen G Y, Hao S W and Yang C H 2017 Nanoscale 9 91.
[11] Biju S, Harris M, Vander Elst L, Wolberg M, Kinschhock C and Parac-Vogt T N 2016 Rsc. Adv. 6 61443
[12] Wu S J, Duan N, Shi Z, Fang C C and Wang Z P 2014 Anal. Chem. 86 3100
[13] Wang Y H, Wang H G, Liu D P, Song S Y, Wang X and Zhang H J 2013 Biomaterials 34 7715
[14] Huang X Y 2016 Dyes Pigments 130 99
[15] Shan G B and Demopoulos G P 2010 Adv. Mater. 22 4373
[16] Huang X Y, Han S Y, HuangW and Liu X Q 2013 Chem. Soc. Rev. 42 173
[17] Krämer K W, Biner D, Frei G, Güdel H U, Hehlen M P and Lüthi S R 2004 Chem. Mater. 16 1244
[18] Aebischer A, Hostettler M, Hauser J, Krämer K, Weber T, Güdel H U and Bürgi H B 2006 Angew. Chem. 118 2869
[19] Yi J, Qu J B, Wang Y A and Zhou D C 2014 Chin. Phys. B 23 104224
[20] Yang J Z, Qiu J B, Yang Z W, Song Z G, Yang Y and Zhou D C 2015 Acta Phys. Sin. 64 138101 (in Chinese)
[21] Li D, Ma Q L, Xi X, Dong X T, Yu W S, Wang J X and Liu G X 2017 Chem. Eng. J. 309 230
[22] Ramasamy P, Chandra P, Rhee S W and Kim J 2013 Nanoscale 5 8711.
[23] Lei L, Chen D Q, Xu J, Zhang R and Wang Y S 2014 Chem. Asian J. 9 728
[24] Gao W, Zheng H R, Han Q Y, He E J, Gao F Q and Wang R B 2014 J. Mater. Chem. C 2 5327
[25] Wang L Y and Li Y D 2007 Chem. Mater. 19 727
[26] Liang X, Wang X, Zhuang J, Peng Q and Li Y 2007 Adv. Funct. Mater. 17 2757
[27] Zeng S J, Ren G Z, Xu C F and Yang Q B 2011 CrystEngComm. 13 1384.
[28] Krämer K W, Biner D, Frei G, Güdel H U, Hehlen M P and Lüthi S R 2004 Chem. Mater. 16 1244
[29] Aebischer A, Hostettler M, Hauser J, Krämer K, Weber T, Güdel H U and Bürgi H B 2006 Angew. Chem. 118 2869
[30] Blasse G and Grabmaier B C 1994 Luminescent Materialsewline (Berlin/Heidelberg: Springer) p. 91
[31] Judd B R 1962 Phys. Rev. 127 750
[32] Zhao C Z, Kong X G, Liu X M, Tu L P, Wu F, Zhang Y L, Liu K, Zeng Q H and Zhang H 2013 Nanoscal 5 8084
[33] Wang L Y and Li Y D 2007 Chem. Mater. 19 727
[34] Zeng S J, Ren G Z, Xu C F and Yang Q B 2011 CrystEngComm. 13 1384
[35] Di Q M, Sun Y M, Xu Q G, Han L, Xue B and Sun J Y 2015 Chin. Phys. B 24 067801
[36] Dai L, Xu C, Zhang Y, Li D Y and Xu Y H 2013 Chin. Phys. B 22 094201
[1] Tuning the particle size, physical properties, and photocatalytic activity of Ag3PO4 materials by changing the Ag+/PO43- ratio
Hung N M, Oanh L T M, Chung D P, Thang D V, Mai V T, Hang L T, and Minh N V. Chin. Phys. B, 2023, 32(3): 038102.
[2] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[3] Migration and shape of cells on different interfaces
Xiaochen Wang(王晓晨), Qihui Fan (樊琪慧), and Fangfu Ye(叶方富). Chin. Phys. B, 2021, 30(9): 090502.
[4] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[5] Laser-induced thermal lens study of the role of morphology and hydroxyl group in the evolution of thermal diffusivity of copper oxide
Riya Sebastian, M S Swapna, Vimal Raj, and S Sankararaman. Chin. Phys. B, 2021, 30(6): 067801.
[6] Water and nutrient recovery from urine: A lead up trail using nano-structured In2S3 photo electrodes
R Jayakrishnan, T R Sreerev, and Adith Varma. Chin. Phys. B, 2021, 30(5): 056103.
[7] Close-coupled nozzle atomization integral simulation and powder preparation using vacuum induction gas atomization technology
Peng Wang(汪鹏), Jing Li(李静), Xin Wang(王欣), Heng-San Liu(刘恒三), Bin Fan(范斌), Ping Gan(甘萍), Rui-Feng Guo(郭瑞峰), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉). Chin. Phys. B, 2021, 30(2): 027502.
[8] Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain
Chao Yang(杨超), Jing Wang(王静), Junsheng Wang(王俊升), Yu Liu(刘瑜), Guomin Han(韩国民), Haifeng Song(宋海峰), and Houbing Huang(黄厚兵). Chin. Phys. B, 2021, 30(1): 018201.
[9] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[10] Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution
Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi. Chin. Phys. B, 2020, 29(5): 058102.
[11] Low-temperature plasma enhanced atomic layer deposition of large area HfS2 nanocrystal thin films
Ailing Chang(常爱玲), Yichen Mao(毛亦琛), Zhiwei Huang(黄志伟), Haiyang Hong(洪海洋), Jianfang Xu(徐剑芳), Wei Huang(黄巍), Songyan Chen(陈松岩), Cheng Li(李成). Chin. Phys. B, 2020, 29(3): 038102.
[12] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
[13] Energy stored in nanoscale water capillary bridges formed between chemically heterogeneous surfaces with circular patches
Bin-Ze Tang(唐宾泽), Xue-Jia Yu(余雪佳), Sergey V. Buldyrev, Nicolas Giovambattista§, and Li-Mei Xu(徐莉梅)¶. Chin. Phys. B, 2020, 29(11): 114703.
[14] Exploring alkylthiol additives in PBDB-T:ITIC blended active layers for solar cell applications
Xiang Li(李想), Zhiqun He(何志群), Mengjie Sun(孙盟杰), Huimin Zhang(张慧敏), Zebang Guo(郭泽邦), Yajun Xu(许亚军), Han Li(李瀚), Chunjun Liang(梁春军), Xiping Jing(荆西平). Chin. Phys. B, 2019, 28(8): 088802.
[15] Time-resolved shadowgraphs and morphology analyses of aluminum ablation with multiple femtosecond laser pulses
Zehua Wu(吴泽华), Nan Zhang(张楠), Xiaonong Zhu(朱晓农), Liqun An(安力群), Gangzhi Wang(王刚志), Ming Tan(谭明). Chin. Phys. B, 2018, 27(7): 077901.
No Suggested Reading articles found!