Special Issue:
SPECIAL TOPIC — Topological 2D materials
|
SPECIAL TOPIC—Topological 2D materials |
Prev
Next
|
|
|
Effect of graphene grain boundaries on MoS2/graphene heterostructures |
Yue Zhang(张悦)1, Xiangzhe Zhang(张祥喆)2, Chuyun Deng(邓楚芸)2, Qi Ge(葛奇)3, Junjie Huang(黄俊杰)1, Jie Lu(卢捷)1, Gaoxiang Lin(林高翔)1, Zekai Weng(翁泽锴)1, Xueao Zhang(张学骜)1,3, Weiwei Cai(蔡伟伟)1,3 |
1 College of Physical Science and Technology, Xiamen University, Xiamen 361005, China; 2 College of Arts and Science, National University of Defense Technology, Changsha 410073, China; 3 Chongqing 2D Materials Institute, Chongqing 400714, China |
|
|
Abstract The grain boundaries of graphene are disordered topological defects, which would strongly affect the physical and chemical properties of graphene. In this paper, the spectral characteristics and photoresponse of MoS2/graphene heterostructures are studied. It is found that the blueshift of the G and 2D peaks of graphene in Raman spectrum is due to doping. The lattice mismatch at the graphene boundaries results in a blueshift of MoS2 features in the photoluminescence spectra, comparing to the MoS2 grown on SiO2. In addition, the photocurrent signal in MoS2/hexagonal single-crystal graphene heterostructures is successfully captured without bias, but not in MoS2/polycrystalline graphene heterostructures. The electron scattering at graphene grain boundaries affects the optical response of MoS2/graphene heterostructures. The photoresponse of the device is attributed to the optical absorption and response of MoS2 and the high carrier mobility of graphene. These findings offer a new approach to develop optoelectronic devices based on two-dimensional material heterostructures.
|
Received: 15 December 2019
Revised: 13 April 2020
Accepted manuscript online:
|
PACS:
|
74.25.Gz
|
(Optical properties)
|
|
78.20.Jq
|
(Electro-optical effects)
|
|
42.70.Gi
|
(Light-sensitive materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11874423). |
Corresponding Authors:
Xueao Zhang, Weiwei Cai
E-mail: xazhang@xmu.edu.cn;wwcai@xmu.edu.cn
|
Cite this article:
Yue Zhang(张悦), Xiangzhe Zhang(张祥喆), Chuyun Deng(邓楚芸), Qi Ge(葛奇), Junjie Huang(黄俊杰), Jie Lu(卢捷), Gaoxiang Lin(林高翔), Zekai Weng(翁泽锴), Xueao Zhang(张学骜), Weiwei Cai(蔡伟伟) Effect of graphene grain boundaries on MoS2/graphene heterostructures 2020 Chin. Phys. B 29 067403
|
[1] |
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
|
[2] |
Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutierrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W and Goldberger J E 2013 ACS Nano 7 2898
|
[3] |
Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263
|
[4] |
Xu M, Liang T, Shi M and Chen H 2013 Chem. Rev. 113 3766
|
[5] |
Ago H, Endo H, Solis-Fernandez P, Takizawa R, Ohta Y, Fujita Y, Yamamoto K and Tsuji M 2015 ACS Appl. Mater. Interfaces 7 5265
|
[6] |
Wang C C, Liu X S, Wang Z Y, Zhao M, He H and Zou J Y 2018 Chin. Phys. B 27 118106
|
[7] |
Lim H, Yoon S I, Kim G, Jang A R and Shin H S 2014 Chem. Mater. 26 4891
|
[8] |
Hu R X, Ma X L, An C H and Liu J 2019 Chin. Phys. B 28 117802
|
[9] |
Lee G H, Yu Y J, Cui X, Petrone N, Lee C H, Choi M S, Lee D Y, Lee C, Yoo W J, Watanabe K, Taniguchi T, Nuckolls C, Kim P and Hone J 2013 ACS Nano 7 7931
|
[10] |
Biswas C and Lee Y H 2011 Adv. Funct. Mater. 21 3806
|
[11] |
Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M and Chhowalla M 2011 Nano Lett. 11 5111
|
[12] |
Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M and Geim A K 2008 Science 320 1308
|
[13] |
Meng J, Song H D, Li C Z, Jin Y, Tang L, Liu D, Liao Z M, Xiu F and Yu D P 2015 Nanoscale 7 11611
|
[14] |
Zhang W, Chuu C P, Huang J K, Chen C H, Tsai M L, Chang Y H, Liang C T, Chen Y Z, Chueh Y L, He J H, Chou M Y and Li L J 2015 Sci. Rep. 4 3826
|
[15] |
Roy K, Padmanabhan M, Goswami S, Sai T P, Ramalingam G, Raghavan S and Ghosh A 2013 Nat. Nanotechnol. 8 826
|
[16] |
Xu H, Wu J, Feng Q, Mao N, Wang C and Zhang J 2014 Small 10 2300
|
[17] |
Yasaei P, Fathizadeh A, Hantehzadeh R, Majee A K, El-Ghandour A, Estrada D, Foster C, Aksamija Z, Khalili-Araghi F and Salehi-Khojin A 2015 Nano Lett. 15 4532
|
[18] |
Yu Q, Jauregui L A, Wu W, Colby R, Tian J, Su Z, Cao H, Liu Z, Pandey D, Wei D, Chung T F, Peng P, Guisinger N P, Stach E A, Bao J, Pei S S and Chen Y P 2011 Nat. Mater. 10 443
|
[19] |
Malola S, Hakkinen H and Koskinen P 2010 Phys. Rev. B 81 165447
|
[20] |
Kim K, Lee Z, Regan W, Kisielowski C, Crommie M F and Zettl A 2011 ACS Nano 5 2142
|
[21] |
Lu J, Bao Y, Su C L and Loh K P 2013 ACS Nano 7 8350
|
[22] |
Yazyev O V and Louie S G 2010 Phys. Rev. B 81 195420
|
[23] |
Zhan L, Wan W, Zhu Z, Zhao Z, Zhang Z, Shih T M and Cai W 2017 Nanotechnology 28 305601
|
[24] |
Zhu Z, Zhan L, Wan W, Zhao Z, Shih T M and Cai W 2017 Nanoscale 9 14804
|
[25] |
Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312
|
[26] |
Zhao Z, Shan Z, Zhang C, Li Q, Tian B, Huang Z, Lin W, Chen X, Ji H, Zhang W and Cai W 2015 Small 11 1418
|
[27] |
Li X, Wu J, Mao N, Zhang J, Lei Z, Liu Z and Xu H 2015 Carbon 92 126
|
[28] |
Reina A, Son H B, Jiao L Y, Fan B, Dresselhaus M S, Liu Z F and Kong J 2008 J. Phys. Chem. C 112 17741
|
[29] |
Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
|
[30] |
Ago H, Kawahara K, Ogawa Y, Tanoue S, Bissett M A, Tsuji M, Sakaguchi H, Koch R J, Fromm F, Seyller T, Komatsu K and Tsukagoshi K 2013 Appl. Phys. Express 6 075101
|
[31] |
Zhou K G, Withers F, Cao Y, Hu S, Yu G L and Casiraghi C 2014 ACS Nano 8 9914
|
[32] |
Zhan Y, Liu Z, Najmaei S, Ajayan P M and Lou J 2012 Small 8 966
|
[33] |
Wu S, Huang C, Aivazian G, Ross J S, Cobden D H and Xu X 2013 ACS Nano 7 2768
|
[34] |
Lin Y F, Li W, Li S L, Xu Y, Aparecido-Ferreira A, Komatsu K, Sun H, Nakaharai S and Tsukagoshi K 2014 Nanoscale 6 795
|
[35] |
Xu X, Gabor N M, Alden J S, Van Der Zande A M and Mceuen P L 2010 Nano Lett. 10 562
|
[36] |
Gabor N M, Song J C W, Ma Q, Nair N L, Taychatanapat T, Watanabe K, Taniguchi T, Levitov L S and Jarillo-Herrero P 2011 Science 334 648
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|