Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 067403    DOI: 10.1088/1674-1056/ab8a37
Special Issue: SPECIAL TOPIC — Topological 2D materials
SPECIAL TOPIC—Topological 2D materials Prev   Next  

Effect of graphene grain boundaries on MoS2/graphene heterostructures

Yue Zhang(张悦)1, Xiangzhe Zhang(张祥喆)2, Chuyun Deng(邓楚芸)2, Qi Ge(葛奇)3, Junjie Huang(黄俊杰)1, Jie Lu(卢捷)1, Gaoxiang Lin(林高翔)1, Zekai Weng(翁泽锴)1, Xueao Zhang(张学骜)1,3, Weiwei Cai(蔡伟伟)1,3
1 College of Physical Science and Technology, Xiamen University, Xiamen 361005, China;
2 College of Arts and Science, National University of Defense Technology, Changsha 410073, China;
3 Chongqing 2D Materials Institute, Chongqing 400714, China
Abstract  The grain boundaries of graphene are disordered topological defects, which would strongly affect the physical and chemical properties of graphene. In this paper, the spectral characteristics and photoresponse of MoS2/graphene heterostructures are studied. It is found that the blueshift of the G and 2D peaks of graphene in Raman spectrum is due to doping. The lattice mismatch at the graphene boundaries results in a blueshift of MoS2 features in the photoluminescence spectra, comparing to the MoS2 grown on SiO2. In addition, the photocurrent signal in MoS2/hexagonal single-crystal graphene heterostructures is successfully captured without bias, but not in MoS2/polycrystalline graphene heterostructures. The electron scattering at graphene grain boundaries affects the optical response of MoS2/graphene heterostructures. The photoresponse of the device is attributed to the optical absorption and response of MoS2 and the high carrier mobility of graphene. These findings offer a new approach to develop optoelectronic devices based on two-dimensional material heterostructures.
Keywords:  photoresponse      heterostructures      grain-boundary  
Received:  15 December 2019      Revised:  13 April 2020      Accepted manuscript online: 
PACS:  74.25.Gz (Optical properties)  
  78.20.Jq (Electro-optical effects)  
  42.70.Gi (Light-sensitive materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11874423).
Corresponding Authors:  Xueao Zhang, Weiwei Cai     E-mail:  xazhang@xmu.edu.cn;wwcai@xmu.edu.cn

Cite this article: 

Yue Zhang(张悦), Xiangzhe Zhang(张祥喆), Chuyun Deng(邓楚芸), Qi Ge(葛奇), Junjie Huang(黄俊杰), Jie Lu(卢捷), Gaoxiang Lin(林高翔), Zekai Weng(翁泽锴), Xueao Zhang(张学骜), Weiwei Cai(蔡伟伟) Effect of graphene grain boundaries on MoS2/graphene heterostructures 2020 Chin. Phys. B 29 067403

[1] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[2] Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutierrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W and Goldberger J E 2013 ACS Nano 7 2898
[3] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263
[4] Xu M, Liang T, Shi M and Chen H 2013 Chem. Rev. 113 3766
[5] Ago H, Endo H, Solis-Fernandez P, Takizawa R, Ohta Y, Fujita Y, Yamamoto K and Tsuji M 2015 ACS Appl. Mater. Interfaces 7 5265
[6] Wang C C, Liu X S, Wang Z Y, Zhao M, He H and Zou J Y 2018 Chin. Phys. B 27 118106
[7] Lim H, Yoon S I, Kim G, Jang A R and Shin H S 2014 Chem. Mater. 26 4891
[8] Hu R X, Ma X L, An C H and Liu J 2019 Chin. Phys. B 28 117802
[9] Lee G H, Yu Y J, Cui X, Petrone N, Lee C H, Choi M S, Lee D Y, Lee C, Yoo W J, Watanabe K, Taniguchi T, Nuckolls C, Kim P and Hone J 2013 ACS Nano 7 7931
[10] Biswas C and Lee Y H 2011 Adv. Funct. Mater. 21 3806
[11] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M and Chhowalla M 2011 Nano Lett. 11 5111
[12] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M and Geim A K 2008 Science 320 1308
[13] Meng J, Song H D, Li C Z, Jin Y, Tang L, Liu D, Liao Z M, Xiu F and Yu D P 2015 Nanoscale 7 11611
[14] Zhang W, Chuu C P, Huang J K, Chen C H, Tsai M L, Chang Y H, Liang C T, Chen Y Z, Chueh Y L, He J H, Chou M Y and Li L J 2015 Sci. Rep. 4 3826
[15] Roy K, Padmanabhan M, Goswami S, Sai T P, Ramalingam G, Raghavan S and Ghosh A 2013 Nat. Nanotechnol. 8 826
[16] Xu H, Wu J, Feng Q, Mao N, Wang C and Zhang J 2014 Small 10 2300
[17] Yasaei P, Fathizadeh A, Hantehzadeh R, Majee A K, El-Ghandour A, Estrada D, Foster C, Aksamija Z, Khalili-Araghi F and Salehi-Khojin A 2015 Nano Lett. 15 4532
[18] Yu Q, Jauregui L A, Wu W, Colby R, Tian J, Su Z, Cao H, Liu Z, Pandey D, Wei D, Chung T F, Peng P, Guisinger N P, Stach E A, Bao J, Pei S S and Chen Y P 2011 Nat. Mater. 10 443
[19] Malola S, Hakkinen H and Koskinen P 2010 Phys. Rev. B 81 165447
[20] Kim K, Lee Z, Regan W, Kisielowski C, Crommie M F and Zettl A 2011 ACS Nano 5 2142
[21] Lu J, Bao Y, Su C L and Loh K P 2013 ACS Nano 7 8350
[22] Yazyev O V and Louie S G 2010 Phys. Rev. B 81 195420
[23] Zhan L, Wan W, Zhu Z, Zhao Z, Zhang Z, Shih T M and Cai W 2017 Nanotechnology 28 305601
[24] Zhu Z, Zhan L, Wan W, Zhao Z, Shih T M and Cai W 2017 Nanoscale 9 14804
[25] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312
[26] Zhao Z, Shan Z, Zhang C, Li Q, Tian B, Huang Z, Lin W, Chen X, Ji H, Zhang W and Cai W 2015 Small 11 1418
[27] Li X, Wu J, Mao N, Zhang J, Lei Z, Liu Z and Xu H 2015 Carbon 92 126
[28] Reina A, Son H B, Jiao L Y, Fan B, Dresselhaus M S, Liu Z F and Kong J 2008 J. Phys. Chem. C 112 17741
[29] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
[30] Ago H, Kawahara K, Ogawa Y, Tanoue S, Bissett M A, Tsuji M, Sakaguchi H, Koch R J, Fromm F, Seyller T, Komatsu K and Tsukagoshi K 2013 Appl. Phys. Express 6 075101
[31] Zhou K G, Withers F, Cao Y, Hu S, Yu G L and Casiraghi C 2014 ACS Nano 8 9914
[32] Zhan Y, Liu Z, Najmaei S, Ajayan P M and Lou J 2012 Small 8 966
[33] Wu S, Huang C, Aivazian G, Ross J S, Cobden D H and Xu X 2013 ACS Nano 7 2768
[34] Lin Y F, Li W, Li S L, Xu Y, Aparecido-Ferreira A, Komatsu K, Sun H, Nakaharai S and Tsukagoshi K 2014 Nanoscale 6 795
[35] Xu X, Gabor N M, Alden J S, Van Der Zande A M and Mceuen P L 2010 Nano Lett. 10 562
[36] Gabor N M, Song J C W, Ma Q, Nair N L, Taychatanapat T, Watanabe K, Taniguchi T, Levitov L S and Jarillo-Herrero P 2011 Science 334 648
[1] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[2] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
[3] Edge assisted epitaxy of CsPbBr3 nanoplates on Bi2O2Se nanosheets for enhanced photoresponse
Haotian Jiang(蒋浩天), Xing Xu(徐兴), Chao Fan(樊超), Beibei Dai(代贝贝), Zhuodong Qi(亓卓栋), Sha Jiang(蒋莎), Mengqiu Cai(蔡孟秋), and Qinglin Zhang(张清林). Chin. Phys. B, 2022, 31(4): 048102.
[4] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[5] Fang-Howard wave function modelling of electron mobility in AlInGaN/AlN/InGaN/GaN double heterostructures
Yao Li(李姚) and Hong-Bin Pu(蒲红斌). Chin. Phys. B, 2021, 30(9): 097201.
[6] Controlled vapor growth of 2D magnetic Cr2Se3 and its magnetic proximity effect in heterostructures
Danliang Zhang(张丹亮), Chen Yi(易琛), Cuihuan Ge(葛翠环), Weining Shu(舒维宁), Bo Li(黎博), Xidong Duan(段曦东), Anlian Pan(潘安练), and Xiao Wang(王笑). Chin. Phys. B, 2021, 30(9): 097601.
[7] Anisotropic photoresponse of layered rhenium disulfide synaptic transistors
Chunhua An(安春华), Zhihao Xu(徐志昊), Jing Zhang(张璟), Enxiu Wu(武恩秀), Xinli Ma(马新莉), Yidi Pang(庞奕荻), Xiao Fu(付晓), Xiaodong Hu(胡晓东), Dong Sun(孙栋), Jinshui Miao(苗金水), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(8): 088503.
[8] Magnetoelectric coupling effect of polarization regulation in BiFeO3/LaTiO3 heterostructures
Chao Jin(金超), Feng-Zhu Ren(任凤竹), Wei Sun(孙伟), Jing-Yu Li(李静玉), Bing Wang(王冰), and Qin-Fen Gu(顾勤奋). Chin. Phys. B, 2021, 30(7): 076105.
[9] Faraday rotations, ellipticity, and circular dichroism in magneto-optical spectrum of moiré superlattices
J A Crosse and Pilkyung Moon. Chin. Phys. B, 2021, 30(7): 077803.
[10] First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures
Zheng Chang(常征), Kunpeng Yuan(苑昆鹏), Zhehao Sun(孙哲浩), Xiaoliang Zhang(张晓亮), Yufei Gao(高宇飞), Xiaojing Gong(弓晓晶), and Dawei Tang(唐大伟). Chin. Phys. B, 2021, 30(3): 034401.
[11] Electronic and optical properties of 3N-doped graphdiyne/MoS2 heterostructures tuned by biaxial strain and external electric field
Dong Wei(魏东), Yi Li(李依), Zhen Feng(冯振), Gaofu Guo(郭高甫), Yaqiang Ma(马亚强), Heng Yu(余恒), Qingqing Luo(骆晴晴), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(11): 117103.
[12] Interfacial properties of g-C3N4/TiO2 heterostructures studied by DFT calculations
Chen-Shan Peng(彭春山), Yong-Dong Zhou(周永东), Sui-Shuan Zhang(张虽栓), and Zong-Yan Zhao(赵宗彦). Chin. Phys. B, 2021, 30(1): 017101.
[13] Edge-and strain-induced band bending in bilayer-monolayer Pb2Se3 heterostructures
Peng Fan(范朋), Guojian Qian(钱国健), Dongfei Wang(王东飞), En Li(李恩), Qin Wang(汪琴), Hui Chen(陈辉), Xiao Lin(林晓), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(1): 018105.
[14] Superlubricity enabled dry transfer of non-encapsulated graphene
Zhe Ying(应哲), Aolin Deng(邓奥林), Bosai Lyu(吕博赛), Lele Wang(王乐乐), Takashi Taniguchi, Kenji Watanabe, Zhiwen Shi(史志文). Chin. Phys. B, 2019, 28(2): 028102.
[15] Room-temperature strong coupling between dipolar plasmon resonance in single gold nanorod and two-dimensional excitons in monolayer WSe2
Jinxiu Wen(温锦秀), Hao Wang(汪浩), Huanjun Chen(陈焕君), Shaozhi Deng(邓少芝), Ningsheng Xu(许宁生). Chin. Phys. B, 2018, 27(9): 096101.
No Suggested Reading articles found!