CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Time-dependent evolution process of Sb2Te3 from nanoplates to nanorods and their Raman scattering properties |
Xiu-Qing Meng(孟秀清)1, Ning Tang(汤宁)1, Mian-Zeng Zhong(钟绵增)2, Hui-Qun Ye(叶慧群)1, Yun-Zhang Fang(方允樟)1 |
1. Zhejiang Provincial Key Laboratory of Solid State Optoelectronic Devices, Zhejiang Normal University, Jinhua 321004, China; 2. State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract High-quality Sb2Te3 nanostructures are synthesized by a simple hydrothermal method. The morphologies of the nanostructures change from hexagonal nanoplates to nanorods with the extension of growth time. Secondary nucleation is the dominant factor responsible for the change of the morphologies. Structural analyses indicate that all the obtained nanostructures are well crystallized. IR-active phonons are mainly observed in the Raman spectra of the nanoplates and nanorods. The slight deviations are observed in the Raman modes between the nanoplates and nanorods, which could originate from confinement effect in the nanostructures.
|
Received: 14 March 2016
Revised: 03 May 2016
Accepted manuscript online:
|
PACS:
|
71.20.Nr
|
(Semiconductor compounds)
|
|
74.25.Gz
|
(Optical properties)
|
|
74.25.Kc
|
(Phonons)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104250 and 61274099), the Fund from the Science Technology Department of Zhejiang Province, China (Grant No. 2012C21007), and the Fund for the Zhejiang Provincial Innovation Team, China (Grant No. 2011R50012). |
Corresponding Authors:
Xiu-Qing Meng, Yun-Zhang Fang
E-mail: xqmeng@semi.ac.cn;fyz@zjnu.cn
|
Cite this article:
Xiu-Qing Meng(孟秀清), Ning Tang(汤宁), Mian-Zeng Zhong(钟绵增), Hui-Qun Ye(叶慧群), Yun-Zhang Fang(方允樟) Time-dependent evolution process of Sb2Te3 from nanoplates to nanorods and their Raman scattering properties 2016 Chin. Phys. B 25 107105
|
[1] |
Hicks L D and Dresselhaus M S 1993 Phys. Rev. B 47 12727
|
[2] |
Hicks L D and Dresselhaus M S 1993 Phys. Rev. B 47 16631
|
[3] |
Harman T C, Taylor P J, Spears D L and Walsh M P 2000 J. Electron. Mater. 29 L1
|
[4] |
Hicks L D, Sun T C, Harman X and Dresselhaus M S 1996 Phys. Rev. B 53 R1049
|
[5] |
Venkatasubramaniam R, Siivola E, Colpitts T and Quinn B O 2001 Nature 413 597
|
[6] |
Romeo N, Bosio A, Tedeschi R, Romeo A and Canevari V 1999 Sol. Energy Mater. Sol. Cells 58 209
|
[7] |
Abken A E and Bartelt O J 2002 Thin Solid Films 403-404 216
|
[8] |
Shi W D, Yu J B, Wang H S and Zhang H J 2006 J. Am. Chem. Soc. 128 16490
|
[9] |
Christian P and O'Brien P 2005 J. Mater. Chem. 15 4949
|
[10] |
Zou H, Rowe D M and Min J J 2001 Vac. Sci. Technol. A 19 899
|
[11] |
ElMandouh Z S 1995 J. Mater. Sci. 30 1273
|
[12] |
Das V D, Soundararajan N and Pattabi M 1987 J. Mater. Sci. 22 3522
|
[13] |
Wuttig M and Yamada N 2007 Nat. Mater. 6 824
|
[14] |
Lankhorst M H R, Ketelaars B W S M M and Wolters R A M 2005 Nat. Mater. 4 347
|
[15] |
Lee S H, Jung Y and Agarwal R 2007 Nat. Nanotechnol. 2 626
|
[16] |
Jung H S and Myung N V 2011 Electrochimica Acta 56 5611
|
[17] |
Prieto A L, Sander M S, Martin M S, Gronsky R, Sands T and Stacy A M 2001 J. Am. Chem. Soc. 123 7160
|
[18] |
Jin C G, Xiang X Q, Jia C, Liu W F, Cai W L, Yao L Z and Li X G 2004 J. Phys. Chem. B 108 1844
|
[19] |
Toprak M, Zhang Y and Muhammed M 2003 Mater. Lett. 57 3976
|
[20] |
Yu S H, Yang J, Wu Y S, Han Z H, Lu J, Xie Y and Qian Y T 1998 J. Mater. Chem. 8 1949
|
[21] |
Wang W Z, Poudel B, Wang D Z and Ren Z F 2005 Acta Mater. 17 2110
|
[22] |
Wang W Z, Poudel B, Yang J, Wang D Z and Ren Z F 2005 J. Am. Ceram. Soc. 127 13792
|
[23] |
Zhang HT, Luo X G, Wang C H, Xiong Y M, Li S Y and Chen X H 2004 J. Cryst. Growth 265 558
|
[24] |
Shi W, Zhou L, Song S, Yang J and Zhang H 2008 Adv. Mater. 20 1892
|
[25] |
Zhou N, Chen G, Zhang X S, Xu Y C, Xu B R and Li M Q 2014 Rsc Adv. 4 2427
|
[26] |
Liang L X, Deng Y, Wang Y and Gao H L 2013 J. Nanopaticles. Res. 16 2138
|
[27] |
Hao G, Qi L X, Fan Y P, Xue L, Peng X Y, Wei X L and Zhong J X 2013 Appl. Phys. Lett. 102 013105
|
[28] |
Richter W, Krost A, Nowak U and Anastassakis E 1982 Physica B-Condens. Matter 49 191
|
[29] |
Kim Y, Chen X, Wang Z, Shi J, Miotkowski I, Chen Y P, Sharma P A, Sharma A L L, Hekmaty M A, Jiang Z and Smirnov D 2012 Appl. Phys. Lett. 100 071907
|
[30] |
Meng X Q, Shen D Z, Zhang J Y, Zhao D X, Lu Y M, Dong L, Zhang Z Z, Liu Y C and Fan X W 2005 Solid State Commun. 135 179
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|