Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 117405    DOI: 10.1088/1674-1056/24/11/117405
Special Issue: TOPICAL REVIEW — Interface-induced high temperature superconductivity
TOPICAL REVIEW—Interface-induced high temperature superconductivity Prev   Next  

What makes the Tc of FeSe/SrTiO3 so high?

Dung-Hai Leea b
a Department of Physics, University of California at Berkeley, Berkeley, CA 94720, USA;
b Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Abstract  

This paper reviews some of the recent progresses in the study of high temperature superconductivity in the interface between a single unit cell FeSe and SrTiO3. It offers the author’s personal view of why Tc is high and how to further increase it.

Keywords:  high      temperature      superconductivity  
Received:  12 August 2015      Revised:  10 October 2015      Accepted manuscript online: 
PACS:  74.20.Mn (Nonconventional mechanisms)  
  74.25.Gz (Optical properties)  
  74.72.-h (Cuprate superconductors)  
Fund: 

Project supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division (Grant No. DE-AC02-05CH11231).

Corresponding Authors:  Dung-Hai Lee     E-mail:  dunghai@berkeley.edu

Cite this article: 

Dung-Hai Lee What makes the Tc of FeSe/SrTiO3 so high? 2015 Chin. Phys. B 24 117405

[1] Bednorz J G and Müller K A 1986 Z. Phys. B 64 189
[2] Kamihara Y, Hidenori H, Hirano M, Kawamura R, Yanagi H, Kamiya T and Hosono H 2006 J. Am. Chem. Soc. 128 10012
[3] Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F and Zhao Z X 2008 Chin. Phys. Lett. 25 2215
[4] Wang Q Y, Li Z, ZhangWH, Zhang Z C, Zhang J S, LiW, Ding H, Ou Y B, Deng P and Chang K 2012 Chin. Phys. Lett. 29 037402
[5] Liu D, Zhang W, Mou D, et al., 2012 Nat. Commun. 3 931
[6] He S, He J, Zhang W, et al., 2013 Nat. Mater. 12 605
[7] Tan S, Zhang Y, Xia M, Ye Z, Chen F, Xie X, Peng R, Xu D, Fan Q, Xu H, Jiang J, Zhang T, Lai X, Xiang T, Hu J, Xie B and Feng D 2013 Nat. Mater. 12 634
[8] Peng R, Xu H C, Tan S Y, Cao H Y, Xia M, Shen X P, Huang Z C,Wen C H P, Song Q, Zhang T, Xie B P, Gong X G and Feng D L 2014 Nat. Commun. 5 5044
[9] Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, LiW, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H and Shen Z X 2014 Nature 515 245
[10] Presentation byWang Y Y at the 2015 Superconductivity Gordon Conference
[11] Ge J F, Liu Z L, Liu C, Gao C L, Qian D, Xue Q K, Liu Y and Jia J F 2015 Nat. Mater. 14 285
[12] Zhang Y, Yang L X, Xu M, Ye Z R, Chen F, He C, Xu H C, Jiang J, Xie B P, Ying J J, Wang X F, Chen X H, Hu J P, Matsunami M, Kimura S and Feng D L 2011 Nat. Mater. 10 273
[13] Mou D, Liu S, Jia X, et al., 2011 Phys. Rev. Lett. 106 107001
[14] Lu X F,Wang N Z,Wu H,Wu Y P, Zhao D, Zeng X Z, Luo X G,Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z and Chen X H 2015 Nat. Mater. 14 325
[15] Zhao L, Liang A, Yuan D, et al., 2015 arXiv:1505.06361 [condmat. supr-con]
[16] Miyata, Y, Nakayama K, Sugawara K, Sato T and Takahashi T 2015 Nat. Mater. 14 775
[17] Song C L, Wang Y L, Jiang Y P, Li Z, Wang L, He K, Chen X, Ma X C and Xue Q K 2011 Phys. Rev. B 84 020503
[18] Turner D W 1970 Phil. Trans. Roy. Soc. Lond. A 268 7
[19] Choudhury N, Walter E J, Kolesnikov A I and Loong C K 2008 Phys. Rev. B 77 134111
[20] Lasotaa C,Wang C Z, Yua R and Krakauera H 1997 Ferroelectrics 194 109
[21] Neutron W G 1972 J. Phys. C: Solid State Phys. 5 2711
[22] Wang Z, McKeown W S, Tamai A, et al., 2015 arXiv:1506.01191 [cond-mat.str-el]
[23] Yi M, Lu D, Chu J H, et al., 2011 PNAS 108 6878
[24] Watson M D, et al., 2015 Phys. Rev. B 91 155106
[25] Zhang Y, et al., private communication.
[26] Li W et al, 2015 arXiv: 1509.01892
[27] Bendele M, Ichsanow A, Pashkevich Y, Keller L, Strässle Th, Gusev A, Pomjakushina E, Conder K, Khasanov R and Keller H 2012 Phys. Rev. B 85 064517
[28] Terashima T, Kikugawa N, Kasahara S, et al., 2015 J. Phys. Soc. Jpn. 84 063701
[29] Fan Q, Zhang W H, Liu X, Yan Y J, Ren M Q, Peng R, Xu H C, Xie B P, Hu J P, Zhang T and Feng D L 2015 Nat. Phys.
[30] Cai P, Ruan W, Zhou X, Ye C, Wang A, Chen X, Lee D H and Wang Y 2014 Phys. Rev. Lett. 112 127001
[31] Kuo H H, Chu J H, Kivelson S A and Fisher I R 2015 arXiv:1503.00402 [cond-mat.supr-con]
[32] Zhang Y, et al., to be publsihed
[33] Davis J C and Lee D H 2013 PNAS 110 17623
[34] Coh S, et al., to be published
[35] Hamlin J J, Baumbach R E, Zhang L, Singh D J, MapleMB and Basov D N 2009 Nat. Phys. 5 647
[36] Yin Z P, Haule K and Kotliar G 2011 Nat. Mater. 10 932
[37] Gretarsson, Lupascu A and Kim J 2011 Phys. Rev. B 84 100509
[38] Wang F, Kivelson S and Lee D H Nat. Phys.
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[3] Couple stress and Darcy Forchheimer hybrid nanofluid flow on a vertical plate by means of double diffusion Cattaneo-Christov analysis
Hamdi Ayed. Chin. Phys. B, 2023, 32(4): 040205.
[4] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[5] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[6] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[7] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[8] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[9] Formalism of rotating-wave approximation in high-spin system with quadrupole interaction
Wen-Kui Ding(丁文魁) and Xiao-Guang Wang(王晓光). Chin. Phys. B, 2023, 32(3): 030301.
[10] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[11] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[12] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[13] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[14] Engineering topological state transfer in four-period Su-Schrieffer-Heeger chain
Xi-Xi Bao(包茜茜), Gang-Feng Guo(郭刚峰), and Lei Tan(谭磊). Chin. Phys. B, 2023, 32(2): 020301.
[15] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
No Suggested Reading articles found!