Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 057401    DOI: 10.1088/1674-1056/27/5/057401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Generalized Drude model and electromagnetic screening in metals and superconductors

Da Wang(王达)
National Laboratory of Solid State Microstructures & School of Physics, Nanjing University, Nanjing 210093, China
Abstract  

Electromagnetic screening is studied from the perspective of fluid mechanics by generalizing the Drude theory, which unifies three known results:Thomas-Fermi screening of the longitudinal field in both metals and superconductors, the skin effect of the transverse field in metals, and the Meissner effect in superconductors. In the special case of superfluid electrons, we slightly generalize the London equations to incorporate the longitudinal electric fields. Moreover, regarding the experiments, our study points out that the dynamical measurement may overestimate the superfluid density.

Keywords:  electromagnetic screening      Thomas-Fermi screening      London penetration depth      Meissner effect  
Received:  26 January 2018      Revised:  05 March 2018      Accepted manuscript online: 
PACS:  74.25.N- (Response to electromagnetic fields)  
  74.20.De (Phenomenological theories (two-fluid, Ginzburg-Landau, etc.))  
  74.25.Gz (Optical properties)  
  71.10.Ca (Electron gas, Fermi gas)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No.11504164).

Corresponding Authors:  Da Wang     E-mail:  dawang@nju.edu.cn

Cite this article: 

Da Wang(王达) Generalized Drude model and electromagnetic screening in metals and superconductors 2018 Chin. Phys. B 27 057401

[1] Ashcroft N W and Mermin N D 1976 Solid State Physics (Beijing:Thomson Learning, Inc.)
[2] London F and London H 1935 Proc. Roy. Soc. London A 149 71
[3] Govaerts J, Bertrand D and Stenuit G 2001 Supercond. Sci. Technol. 14 463
[4] Hirsch J E 2003 Phys. Phys. B 68 184502
[5] Hirsch J E 2005 Phys. Phys. Lett. 94 187001
[6] Hirsch J E 2004 Phys. Rev. B 69 214515
[7] Tajmar M 2008 Phys. Lett. A 372 3289
[8] Simoni G D, Paolucci F, Solinas P, Strambini E and Giazotto F 2017 arXiv:1710.02400[cond-mat]
[9] Bozovic I, He X, Wu J and Bollinger A T 2016 Nature 536 309
[10] Zaanen J 2016 Nature 536 282
[11] Homes C C, Dordevic S V, Strongin M, Bonn D A, Liang R, Hardy W N, Komiya S, Ando Y, Yu G, Kaneko N, Zhao X, Greven M, Basov D N and Timusk T 2004 Nature 430 539
[12] Dordevic S V, Basov D N and Homes C C 2013 Sci. Rep. 3 1713
[13] Landau L D and Lifshitz 1987 Fluid Mechanics (Beijing:Pergamon Books Ltd.)
[14] Levitov L and Falkovich G 2016 Nat. Phys. 12 672
[15] Stix T H 1992 Waves in Plasmas (New York:American Institute of Physics)
[16] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175
[17] Edwards W F 1981 Phys. Rev. Lett. 47 1863
[18] Taylor J B 1982 Nature 299 681
[19] Essen H and Fiolhais M C N 2012 Am. J. Phys. 80 164
[20] Yoshioka D 2012 arXiv:1203.2227[cond-mat]
[21] Anderson P W 1963 Phys. Rev. 130 439
[22] Anderson P W 1958 Phys. Rev. 112 1900
[23] Koyama T 2004 Phys. Rev. B 70 226503
[24] London F 1954 Superfluid (New York:Dover Publications, Inc.)
[25] Bardeen J 1958 Phys. Rev. Lett. 1 399
[26] Wang D 2017 arXiv:1703.03183[cond-mat]
[27] Mahmood F, He X, Bozovic I and Armitage N P 2008 arXiv:1802.02101
[1] Levitation and lateral forces between a point magnetic dipole and a superconducting sphere
H M Al-Khateeb, M K Alqadi, F Y Alzoubi, B Albiss, M K Hasan (Qaseer), N Y Ayoub. Chin. Phys. B, 2016, 25(5): 058402.
[2] Investigation the positive moments on the $M$$-$$T$ curve of YBCO films measured by using zero-field cooling
Guo Shu-Quan (郭树权), Wang Feng-Lin (王凤林), Zhou Yue-Liang (周岳亮), Zhao Bai-Ru (赵柏儒), Gao Ju (高炬). Chin. Phys. B, 2002, 11(4): 379-382.
No Suggested Reading articles found!