Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 087302    DOI: 10.1088/1674-1056/22/8/087302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Lowering plasma frequency by enhancing the effective mass of electrons:A route to deep sub-wavelength metamaterials

Qin Gang (秦刚)a, Wang Jia-Fu (王甲富)b, Yan Ming-Bao (闫明宝)b, Chen Wei (陈维)b, Chen Hong-Ya (陈红雅)b, Li Yong-Feng (李勇峰)b
a College of Electronic Information Engineering, Xi'an Technological University, Xi'an 710032, China;
b College of Science, Air Force Engineering University, Xi'an 710051, China
Abstract  Deep sub-wavelength metamaterials are the key to the further development of practical metamaterials with small volumes and broadband properties. We propose to reduce the electrical sizes of metamaterials down to more sub-wavelength scales by lowering the plasma frequencies of metallic wires. The theoretical model is firstly established by analyzing the plasma frequency of continuous thin wires. By introducing more inductance elements, the effective electron mass can be enhanced drastically, leading to significantly lowered plasma frequencies. Based on this theory, we demonstrate that both the electric and the magnetic plasma frequencies of metamaterials can be lowered significantly and thus the electrical sizes of metamaterials can be reduced to more sub-wavelength scales. This provides an efficient route to deep sub-wavelength metamaterials and will give rigorous impetus for the further development of practical metamaterials.
Keywords:  metamaterials      deep sub-wavelength      plasma frequency      effective electron mass  
Received:  11 December 2012      Revised:  19 January 2013      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  77.22.-d (Dielectric properties of solids and liquids)  
  84.90.+a (Other topics in electronics, radiowave and microwave technology, and direct energy conversion and storage)  
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 11204378 and 11274389) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2011JQ8031).
Corresponding Authors:  Wang Jia-Fu     E-mail:  wangjiafu1981@126.com

Cite this article: 

Qin Gang (秦刚), Wang Jia-Fu (王甲富), Yan Ming-Bao (闫明宝), Chen Wei (陈维), Chen Hong-Ya (陈红雅), Li Yong-Feng (李勇峰) Lowering plasma frequency by enhancing the effective mass of electrons:A route to deep sub-wavelength metamaterials 2013 Chin. Phys. B 22 087302

[1] Pendry J B, Holden A J, Stewart W J and Youngs I 1996 Phys. Rev. Lett. 76 4773
[2] Pendry J B, Holden A J, Robbins D J and Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075
[3] Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[4] Choi M, Lee S H, Kim Y, Kang S B, Shin J, Kwak M H, Kang K Y, Lee Y H, Park N and Min B 2011 Nature 470 369
[5] Huang X Q, Lai Y, Hang Z H, Zheng H H and Chan C T 2011 Nat. Mater. 10 582
[6] Holloway C L, Kuester E F, Baker-Jarvis J and Kabos P 2003 IEEE Trans. Antenn. Propag. 51 2596
[7] Wang J F, Qu S B, Yang Y M, Ma H, Wu X and Xu Z 2009 Appl. Phys. Lett. 95 014105
[8] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[9] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[10] Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T and Zhou L 2007 Phys. Rev. Lett. 99 063908
[11] Sun S L, He Q, Xiao S Y, Xu Q, Li X and Zhou L 2012 Nat. Mater. 11 426
[12] Ma H, Qu S B, Xu Z and Wang J F 2009 Opt. Lett. 34 127
[13] Liu Z W, Lee H, Xiong Y, Sun C and Zhang X 2007 Science 315 1686
[14] Wang J F, Qu S B, Xu Z, Ma H, Xia S, Yang Y M, Wu X, Wang Q and Chen C H 2010 Phys. Rev. E 81 036601
[15] Chen H S, Ran L X, Huangfu J T, Zhang X M, Chen K S, Grzegorczyk T M and Kong J A 2004 Phys. Rev. E 70 057605
[16] Tang W X, Zhao H, Zhou X Y, Chin J Y and Cui T J 2008 Prog. Electromag. Res. B 8 103
[17] Chen C H, Qu S B, Xu Z, Wang J F, Ma H and Zhou H 2011 Acta Phys. Sin. 60 024101 (in Chinese)
[18] Zhou J F, Zhang L, Tuttle G, Koschny T and Soukoulis C M 2006 Phys. Rev. B 73 041101
[19] Koschny T, Kafesaki M, Economou E N and Soukoulis C M 2004 Phys. Rev. Lett. 93 107402
[20] Simovski C R and Tretyakov S A 2007 Phys. Rev. B 75 195111
[21] Lo Y T and Lee S W 1988 Antenna Handbook: Theory, Applications, and Design (New York: Van Nostrand Reinold Co.)
[22] Xie C F and Rao K J 2006 Electromagnetic Fields and Electromagnetic Waves (Beijing: Higher Education Press) (in Chinese)
[1] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[2] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[3] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[4] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[5] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[6] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[7] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
[8] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[9] Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials
Chunzhen Fan(范春珍), Peiwen Ren(任佩雯), Yuanlin Jia(贾渊琳), Shuangmei Zhu(朱双美), and Junqiao Wang(王俊俏). Chin. Phys. B, 2021, 30(9): 096103.
[10] Efficient realization of daytime radiative cooling with hollow zigzag SiO2 metamaterials
Huawei Yao(姚华伟), Xiaoxia Wang(王晓霞), Huaiyuan Yin(殷怀远), Yuanlin Jia(贾渊琳), Yong Gao(高勇), Junqiao Wang(王俊俏), and Chunzhen Fan(范春珍). Chin. Phys. B, 2021, 30(6): 064214.
[11] Hyperbolic metamaterials for high-efficiency generation of circularly polarized Airy beams
Lin Chen(陈林), Huihui Li(李会会), Weiming Hao(郝玮鸣), Xiang Yin(殷祥), Jian Wang(王健). Chin. Phys. B, 2020, 29(8): 084210.
[12] Extraordinary propagation characteristics of electromagnetic waves in one-dimensional anti-PT-symmetric ring optical waveguide network
Jie-Feng Xu(许杰锋), Xiang-Bo Yang(杨湘波), Hao-Han Chen(陈浩瀚), Zhan-Hong Lin(林展鸿). Chin. Phys. B, 2020, 29(6): 064201.
[13] Efficient and multifunctional terahertz polarization control device based on metamaterials
Xiao-Fei Jiao(焦晓飞), Zi-Heng Zhang(张子恒), Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2020, 29(11): 114209.
[14] Enhanced reflection chiroptical effect of planar anisotropic chiral metamaterials placed on the interface of two media
Xiu Yang(杨秀), Tao Wei(魏涛), Feiliang Chen(陈飞良), Fuhua Gao(高福华), Jinglei Du(杜惊雷)†, and Yidong Hou(侯宜栋)‡. Chin. Phys. B, 2020, 29(10): 107303.
[15] Analysis of elliptical thermal cloak based on entropy generation and entransy dissipation approach
Meng Wang(王梦), Shiyao Huang(黄诗瑶), Run Hu(胡润), Xiaobing Luo(罗小兵). Chin. Phys. B, 2019, 28(8): 087804.
No Suggested Reading articles found!