Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 087301    DOI: 10.1088/1674-1056/22/8/087301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Structural, electronic, and optical properties of ZnO1-xSex alloys using first-principles calculations

Muhammad Rashida, Fayyaz Hussaina, Muhammad Imrana, S A Ahmada, N A Noor M U Sohaibb, S M Alay-e-Abbasd
a Department of Physics Simulation Laboratory, the Islamia University of Bahawalpur, 63100, Pakistan;
b Department of Physics, University of the Punjab, Quaid-e-Azam Campus, 54590 Lahore, Pakistan;
c Department of Physics, GC University Faisalabad, Allama Iqbal Road, Faisalabad 38000, Pakistan;
d Lahore Development Authority, 54590 Lahore, Pakistan
Abstract  The structural, electronic, and optical properties of binary ZnO, ZnSe compounds, and their ternary ZnO1-xSex alloys are computed using the accurate full potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method in the rocksalt (B1) and zincblende (B3) crystallographic phases. The electronic band structures, fundamental energy band gaps, and densities of states for ZnO1-xSex are evaluated in the range 0≤ x ≤ 1 using Wu-Cohen (WC) generalized gradient approximation (GGA) for the exchange-correlation potential. Our calculated results of lattice parameters and bulk modulus reveal a nonlinear variation for pseudo-binary and their ternary alloys in both phases and show a considerable deviation from Vegard's law. It is observed that the predicted lattice parameter and bulk modulus are in good agreement with the available experimental and theoretical data. We establish that the composition dependence of band gap is semi-metallic in B1 phase, while a direct band gap is observed in B3 phase. The calculated density of states is described by taking into account the contribution of Zn 3d, O 2p, and Se 4s, and the optical properties are studied in terms of dielectric functions, refractive index, reflectivity, and energy loss function for the B3 phase and are compared with the available experimental data.
Keywords:  density functional theory      alloys      structural      electronic      optical properties  
Received:  17 October 2012      Revised:  25 December 2012      Accepted manuscript online: 
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project partially supported by HEC, Pakistan.
Corresponding Authors:  Fayyaz Hussain     E-mail:  fiazz hussain@yahoo.com

Cite this article: 

Muhammad Rashid, Fayyaz Hussain, Muhammad Imran, S A Ahmad, N A Noor M U Sohaib, S M Alay-e-Abbas Structural, electronic, and optical properties of ZnO1-xSex alloys using first-principles calculations 2013 Chin. Phys. B 22 087301

[1] Joseph M, Tabata H and H.Kawai H 1999 J. Appl. Phys. 1 38
[2] Venkatesan M, Fitzgerald C B, Lunney J G and Coey J M D 2004 Phys. Rev. Lett. 93 177
[3] Klingshirn C, Priller H, Decker M, Bruckner J, Kalt H, Hauschild R, Zeller J, Bakin A, Wehmann H, Thonke K, Sauer R, Kling R, Reuss F, and Kirchner C 2005 Adv. Solid State Phys. 45 275
[4] Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J and Morkoc H 2005 J. Appl. Phys. 98 041301
[5] Freund H 2007 J. Surf. Sci. 6011438
[6] Karami H, Aminifar A, Tavallali H and Namdar Z 2010 Clust. Sci. 21 1
[7] Cho M W, Chang J H, Bagnall D M, Koh K W, Saeki S, Park S K T, Zhu Z, Hiraga K and Yao T 1999 J. Appl. Phys. 85 512
[8] Van der Walle C G 1993 Wide Band-gap Semiconductors (Amsterdam: North Holland)
[9] Makino T, Segawa Y, Kawasaki M, Ohtomo A, Shiroki R, Tamura K, Yasuda T and Koinuma H 2001 Appl. Phys. Lett. 78 1237
[10] Kang B S, Wang H T, Tien L C, Ren F, Gila B P, Norton D P, Abernathy C R, Lin J S and Pearton S 2006 J. Sensors 6 643
[11] Long Z, Fei L P, Yuan Y Z, Jia M S, Lu D and Tao L J 2012 Chin. Phys. B 21 097103
[12] Yoo Y Z, Jin Z W, Chikyow T, Fukumura T, Kawasak M and Koinuma H 2002 Appl. Phys. Lett. 81 3798
[13] Shan W, Walukiewicz W, Ager J W III, Yu K M, Wu J, Haller E E, Nabetani Y, Mukawa T, Ito Y and Matsumoto T 2003 Appl. Phys. Lett. 83 299
[14] Salmani E, Benyoussef A, Ez-Zahraouy H, Saidi E H and Mounkachi O 2012 Chin. Phys. B 21 106601
[15] Guang X X, Ling Y H, Zhang Y Y, Lin D and Yong J 2012 Chin. Phys. B 21 047504
[16] Hirose J, Uesugi K, Hoshiyama M, Numai T and Suemune I 1998 J. Appl. Phys. 84 6100
[17] Li H Y, Jie W Q, Zhang S A, Sun Z R and Xu K W 2006 Chin. Phys. 15 2407
[18] Ping B X and Liang B S 2008 Chin. Phys. B 17 4606
[19] Iwata K, Fons P, Yamada A, Shibata H, Matsubara K, Nakahara K, Takasu H and Niki S 2002 Phys. Stat. Sol. B 229 887
[20] Wei S H and Zunger A 1996 Phys. Rev. Lett. 76 664
[21] Quemard G, Reiss P, Carayon S and Bleuse J 2005 J. Crystal Growth 275 5
[22] Angelika P, Bruno K M, Thorsten K, Changzhong W and Axel H 2006 Phys. Stat. Sol. 203 2868
[23] Noor N A, Ikram N, Ali S, Nazir S, Alay-e-abbas S M and Shaukat A 2010 J. Alloys Compd. 507 356
[24] Dong Y X, Bing L, Feng L R, Lu W X and Xun Z 2011 Chin. Phys. B 20 036104
[25] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2K (Vienna: Techn. Universitat)
[26] Wu Z and Cohen R E 2006 Phys. Rev. B 73 235116
[27] Schwarz K, Blaha P and Madsen G K H 2002 Comput. Phys. Commun. 147 71
[28] Murnagham F D 1944 Proc. Natl. Acad. Sci. 30 244
[29] Vegard L 1921 Z. Phys. 5 17
[30] Nazir S, Ikram N and Amin B 2009 J. Phys. Chem. Solids 70 874
[31] Amin B, Ahmad I, Maqbool M, Ikram N, Saeed Y and Ahmad A 2010 J. Alloys Compd. 493 212
[32] Karzel, Potzel H W, Kofferlein M, Schiessl W, Steiner M, Hiller U, Kalvius G M, Mitchell D W, Das T P, Blaha P, Schwarz K and Pasternak M P 1996 Phys. Rev. B 53 11425
[33] Charifi, Baaziz Z H and Reshak A H 2007 Phys. Stat. Sol. 244 3154
[34] Schleife A, Fuchs F, Furthmuller J and Bechstedt F 2008 Phys. Rev. 73 245212
[35] Mujica A, Munoz A and Needs R J 1998 Phys. Rev. B 57 1344
[36] Qteish A, Abu-Jafar M and Nazzal A 1998 J. Phys.: Condens. Matter 10 5069
[37] Shouxin C, Haiquan H, Wenxia F, Chenb X and Feng Z 2009 J. Alloys Compd. 472 294
[38] Bragg W H and Darbyshire J A 1954 J. Met. 6 238
[39] Nelmes R J, McMahon M I, Wright N G and Allan D R 1995 J. Phys. Chem. Sol. 56 545
[40] Labidi S, Meradji H, Labidi M, Ghemid S, Drablia S and Hassan F El Haj 2009 Phys. Procedia 2 1205
[41] Nabetani Y, Mukawa T, Ito Y, Kato T and Matsumoto T 2003 Appl. Phys. Lett. 83 299
[42] Mahdi S, Neda L and Roland H 2011 J. Appl. Phys. 109 073705
[43] Ambrosch-Draxl C and Sofo J O 2006 Comput. Phys. Commum. 175 1
[44] Penn D R 1962 Phys. Rev. 128 2093
[45] Bhattacharyya S R, Gayen R N, Paul R and Pal A K 2009 Thin Solid Films 517 5530
[1] A simple semiempirical model for the static polarizability of electronically excited atoms and molecules
Alexander S Sharipov, Alexey V Pelevkin, and Boris I Loukhovitski. Chin. Phys. B, 2023, 32(4): 043301.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[4] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[5] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[6] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[7] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[8] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[9] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[10] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[11] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[12] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[13] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[14] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[15] Optoelectronic oscillator-based interrogation system for Michelson interferometric sensors
Ling Liu(刘玲), Xiaoyan Wu(吴小龑), Guodong Liu(刘国栋), Tigang Ning(宁提纲),Jian Xu(许建), and Haidong You(油海东). Chin. Phys. B, 2022, 31(9): 090702.
No Suggested Reading articles found!