CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Structural, electronic, and optical properties of ZnO1-xSex alloys using first-principles calculations |
Muhammad Rashida, Fayyaz Hussaina, Muhammad Imrana, S A Ahmada, N A Noor M U Sohaibb, S M Alay-e-Abbasd |
a Department of Physics Simulation Laboratory, the Islamia University of Bahawalpur, 63100, Pakistan;
b Department of Physics, University of the Punjab, Quaid-e-Azam Campus, 54590 Lahore, Pakistan;
c Department of Physics, GC University Faisalabad, Allama Iqbal Road, Faisalabad 38000, Pakistan;
d Lahore Development Authority, 54590 Lahore, Pakistan |
|
|
Abstract The structural, electronic, and optical properties of binary ZnO, ZnSe compounds, and their ternary ZnO1-xSex alloys are computed using the accurate full potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method in the rocksalt (B1) and zincblende (B3) crystallographic phases. The electronic band structures, fundamental energy band gaps, and densities of states for ZnO1-xSex are evaluated in the range 0≤ x ≤ 1 using Wu-Cohen (WC) generalized gradient approximation (GGA) for the exchange-correlation potential. Our calculated results of lattice parameters and bulk modulus reveal a nonlinear variation for pseudo-binary and their ternary alloys in both phases and show a considerable deviation from Vegard's law. It is observed that the predicted lattice parameter and bulk modulus are in good agreement with the available experimental and theoretical data. We establish that the composition dependence of band gap is semi-metallic in B1 phase, while a direct band gap is observed in B3 phase. The calculated density of states is described by taking into account the contribution of Zn 3d, O 2p, and Se 4s, and the optical properties are studied in terms of dielectric functions, refractive index, reflectivity, and energy loss function for the B3 phase and are compared with the available experimental data.
|
Received: 17 October 2012
Revised: 25 December 2012
Accepted manuscript online:
|
PACS:
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
Fund: Project partially supported by HEC, Pakistan. |
Corresponding Authors:
Fayyaz Hussain
E-mail: fiazz hussain@yahoo.com
|
Cite this article:
Muhammad Rashid, Fayyaz Hussain, Muhammad Imran, S A Ahmad, N A Noor M U Sohaib, S M Alay-e-Abbas Structural, electronic, and optical properties of ZnO1-xSex alloys using first-principles calculations 2013 Chin. Phys. B 22 087301
|
[1] |
Joseph M, Tabata H and H.Kawai H 1999 J. Appl. Phys. 1 38
|
[2] |
Venkatesan M, Fitzgerald C B, Lunney J G and Coey J M D 2004 Phys. Rev. Lett. 93 177
|
[3] |
Klingshirn C, Priller H, Decker M, Bruckner J, Kalt H, Hauschild R, Zeller J, Bakin A, Wehmann H, Thonke K, Sauer R, Kling R, Reuss F, and Kirchner C 2005 Adv. Solid State Phys. 45 275
|
[4] |
Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J and Morkoc H 2005 J. Appl. Phys. 98 041301
|
[5] |
Freund H 2007 J. Surf. Sci. 6011438
|
[6] |
Karami H, Aminifar A, Tavallali H and Namdar Z 2010 Clust. Sci. 21 1
|
[7] |
Cho M W, Chang J H, Bagnall D M, Koh K W, Saeki S, Park S K T, Zhu Z, Hiraga K and Yao T 1999 J. Appl. Phys. 85 512
|
[8] |
Van der Walle C G 1993 Wide Band-gap Semiconductors (Amsterdam: North Holland)
|
[9] |
Makino T, Segawa Y, Kawasaki M, Ohtomo A, Shiroki R, Tamura K, Yasuda T and Koinuma H 2001 Appl. Phys. Lett. 78 1237
|
[10] |
Kang B S, Wang H T, Tien L C, Ren F, Gila B P, Norton D P, Abernathy C R, Lin J S and Pearton S 2006 J. Sensors 6 643
|
[11] |
Long Z, Fei L P, Yuan Y Z, Jia M S, Lu D and Tao L J 2012 Chin. Phys. B 21 097103
|
[12] |
Yoo Y Z, Jin Z W, Chikyow T, Fukumura T, Kawasak M and Koinuma H 2002 Appl. Phys. Lett. 81 3798
|
[13] |
Shan W, Walukiewicz W, Ager J W III, Yu K M, Wu J, Haller E E, Nabetani Y, Mukawa T, Ito Y and Matsumoto T 2003 Appl. Phys. Lett. 83 299
|
[14] |
Salmani E, Benyoussef A, Ez-Zahraouy H, Saidi E H and Mounkachi O 2012 Chin. Phys. B 21 106601
|
[15] |
Guang X X, Ling Y H, Zhang Y Y, Lin D and Yong J 2012 Chin. Phys. B 21 047504
|
[16] |
Hirose J, Uesugi K, Hoshiyama M, Numai T and Suemune I 1998 J. Appl. Phys. 84 6100
|
[17] |
Li H Y, Jie W Q, Zhang S A, Sun Z R and Xu K W 2006 Chin. Phys. 15 2407
|
[18] |
Ping B X and Liang B S 2008 Chin. Phys. B 17 4606
|
[19] |
Iwata K, Fons P, Yamada A, Shibata H, Matsubara K, Nakahara K, Takasu H and Niki S 2002 Phys. Stat. Sol. B 229 887
|
[20] |
Wei S H and Zunger A 1996 Phys. Rev. Lett. 76 664
|
[21] |
Quemard G, Reiss P, Carayon S and Bleuse J 2005 J. Crystal Growth 275 5
|
[22] |
Angelika P, Bruno K M, Thorsten K, Changzhong W and Axel H 2006 Phys. Stat. Sol. 203 2868
|
[23] |
Noor N A, Ikram N, Ali S, Nazir S, Alay-e-abbas S M and Shaukat A 2010 J. Alloys Compd. 507 356
|
[24] |
Dong Y X, Bing L, Feng L R, Lu W X and Xun Z 2011 Chin. Phys. B 20 036104
|
[25] |
Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2K (Vienna: Techn. Universitat)
|
[26] |
Wu Z and Cohen R E 2006 Phys. Rev. B 73 235116
|
[27] |
Schwarz K, Blaha P and Madsen G K H 2002 Comput. Phys. Commun. 147 71
|
[28] |
Murnagham F D 1944 Proc. Natl. Acad. Sci. 30 244
|
[29] |
Vegard L 1921 Z. Phys. 5 17
|
[30] |
Nazir S, Ikram N and Amin B 2009 J. Phys. Chem. Solids 70 874
|
[31] |
Amin B, Ahmad I, Maqbool M, Ikram N, Saeed Y and Ahmad A 2010 J. Alloys Compd. 493 212
|
[32] |
Karzel, Potzel H W, Kofferlein M, Schiessl W, Steiner M, Hiller U, Kalvius G M, Mitchell D W, Das T P, Blaha P, Schwarz K and Pasternak M P 1996 Phys. Rev. B 53 11425
|
[33] |
Charifi, Baaziz Z H and Reshak A H 2007 Phys. Stat. Sol. 244 3154
|
[34] |
Schleife A, Fuchs F, Furthmuller J and Bechstedt F 2008 Phys. Rev. 73 245212
|
[35] |
Mujica A, Munoz A and Needs R J 1998 Phys. Rev. B 57 1344
|
[36] |
Qteish A, Abu-Jafar M and Nazzal A 1998 J. Phys.: Condens. Matter 10 5069
|
[37] |
Shouxin C, Haiquan H, Wenxia F, Chenb X and Feng Z 2009 J. Alloys Compd. 472 294
|
[38] |
Bragg W H and Darbyshire J A 1954 J. Met. 6 238
|
[39] |
Nelmes R J, McMahon M I, Wright N G and Allan D R 1995 J. Phys. Chem. Sol. 56 545
|
[40] |
Labidi S, Meradji H, Labidi M, Ghemid S, Drablia S and Hassan F El Haj 2009 Phys. Procedia 2 1205
|
[41] |
Nabetani Y, Mukawa T, Ito Y, Kato T and Matsumoto T 2003 Appl. Phys. Lett. 83 299
|
[42] |
Mahdi S, Neda L and Roland H 2011 J. Appl. Phys. 109 073705
|
[43] |
Ambrosch-Draxl C and Sofo J O 2006 Comput. Phys. Commum. 175 1
|
[44] |
Penn D R 1962 Phys. Rev. 128 2093
|
[45] |
Bhattacharyya S R, Gayen R N, Paul R and Pal A K 2009 Thin Solid Films 517 5530
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|