Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 047505    DOI: 10.1088/1674-1056/22/4/047505
Special Issue: TOPICAL REVIEW — Magnetism, magnetic materials, and interdisciplinary research
TOPICAL REVIEW—Magnetism, magnetic materials, and interdisciplinary research Prev   Next  

Reactively sputtered Fe3O4-based films for spintronics

Li Peng (李鹏), Jin Chao (金朝), Mi Wen-Bo (米文博), Bai Hai-Li (白海力)
Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, Faculty of Science, Tianjin University, Tianjin 300072, China
Abstract  Half metallic polycrystalline, epitaxial Fe3O4 films and Fe3O4-based heterostructures for spintronics were fabricated by DC reactive magnetron sputtering. Large tunneling magnetoresistance was found in the polycrystalline Fe3O4 films and attributed to the insulating grain boundaries. The pinning effect of the moments at the grain boundaries leads to a significant exchange bias. Frozen interfacial/surface moments induce weak saturation of the high-field magnetoresistance. The films show a moment rotation related butterfly-shaped magnetoresistance. It was found that in the films, natural growth defects, antiphase boundaries, and magnetocrystalline anisotropy play important roles in high-order anisotropic magnetoresistance. Spin injection from Fe3O4 films to semiconductive Si and ZnO was measured to be 45% and 28.5%, respectively. The positive magnetoresistance in the Fe3O4-based heterostructures is considered to be caused by a shift of the Fe3O4 eg ↑ band near the interface. Enhanced magnetization was observed in Fe3O4/BiFeO3 heterostructures experimentally and further proved by first principle calculations. The enhanced magnetization can be explained by spin moments of the thin BiFeO3 layer substantially reversing into a ferromagnetic arrangement under a strong coupling that is principally induced by electronic orbital reconstruction at the interface.
Keywords:  reactively sputtered Fe3O4 films      spintronics      magnetoresistance      interface  
Received:  01 March 2013      Accepted manuscript online: 
PACS:  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  72.25.Mk (Spin transport through interfaces)  
  81.15.Cd (Deposition by sputtering)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51272174) and the Natural Science Foundation of Tianjin City (Grant No. 12JCYBJC11100).
Corresponding Authors:  Bai Hai-Li     E-mail:  baihaili@tju.edu.cn

Cite this article: 

Li Peng (李鹏), Jin Chao (金朝), Mi Wen-Bo (米文博), Bai Hai-Li (白海力) Reactively sputtered Fe3O4-based films for spintronics 2013 Chin. Phys. B 22 047505

[1] Verwey J E W and Haayman P W 1941 Physica 8 979
[2] Zhang Z and Satpathy S 1991 Phys. Rev. B 44 13319
[3] Hu G and Suzuki Y 2002 Phys. Rev. Lett. 89 276601
[4] Zhao L B, Mi W B, Jiang E Y and Bai H L 2007 Appl. Phys. Lett. 91052113
[5] Tripathy D, Adeyeye A O and Shannigrahi S 2007 Phys. Rev. B 75012403
[6] Mitani S, Takahashi S, Takanashi K, Yakushiji K, Maekawa S and FujimoriH 1998 Phys. Rev. Lett. 81 2799
[7] Li X W, Gupta A, Xiao G, Qian W and Dravid V P 1998 Appl. Phys.Lett. 73 3282
[8] Inoue J and Maekawa S 1996 Phys. Rev. B 53 R11927
[9] EerensteinW, Palstra T T M, Saxena S S and Hibma T 2002 Phys. Rev.Lett. 88 247204
[10] Eerenstein W, Palstra T T M, Hibma T and Celotto S 2002 Phys. Rev.B 66 R20110
[11] Coey JMD, Berkowitz A E, Balcells L, Putris F F and Parker F T 1998Appl. Phys. Lett. 72 734
[12] Coey J M D, Berkowitz A E, Balcells L, Putris F F and Barry A 1998Phys. Rev. Lett. 80 3815
[13] Peng D L, Asai T, Nozawa N, Hihara T and Sumiyama K 2002 Appl.Phys. Lett. 81 4598
[14] Gridin V V, Hearne G R and Honig J M 1996 Phys. Rev. B 53 15518
[15] Wawatzky G A, Geertsma W and Haas C 1976 J. Magn. Magn. Mater.3 37
[16] Margulies D T, Parker F T, Rudee M L, Spada F E, Chapman J N,Aitchison P R and Berkowitz A E 1997 Phys. Rev. Lett. 79 5162
[17] Margulies D T, Parker F T, Spada F E, Goldman R S, Li J, Sinclair Rand Berkowitz A E 1996 Phys. Rev. B 53 9175
[18] Hammar P R, Bennett B R, Yang M J and Johnson M 1999 Phys. Rev.Lett. 83 203
[19] Schmidt G, Ferrand D, Molenkamp L W, Filip A T and van Wees B J2000 Phys. Rev. B 62 R4709
[20] Rashba E I 2000 Phys. Rev. B 62 R16267
[21] Fert A and Jaffr`es H 2001 Phys. Rev. B 64 184420
[22] Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H andAwschalom D D 1999 Nature 402 790
[23] Watts S M, Nakajima K, van Dijken S and Coey J M 2004 J. Appl.Phys. 95 7465
[24] Watts S M, Boothman C, van Dijken S and Coey J M 2005 Appl. Phys.Lett. 86 212108
[25] Chen P L, Xing D Y, Du Y W, Zhu J M and Feng D 2001 Phys. Rev.Lett. 87 107202
[26] Mi W B, Shen J J, Jiang E Y and Bai H L 2007 Acta Mater. 55 1919
[27] Liu H, Jiang E Y, Bai H L, Zheng R K, Wei H L and Zhang X X 2003Appl. Phys. Lett. 83 3531
[28] Shepherd J P, Koenitzer J W, Aragon R, Spalek J and Honig J M 1991Phys. Rev. B 43 8461
[29] Arora S K, Sofin R G S, Nolan A and Shvets I V 2005 J. Magn. Magn.Mater. 286 463
[30] Zheng R K, Wen G H, Fung K K and Zhang X X 2004 Phys. Rev. B 69214431
[31] Chien C L, Xiao J Q and Jiang J S 1993 J. Appl. Phys. 73 5309
[32] Li P, Zhang L T, Mi W B, Jiang E Y and Bai H L 2009 J. Appl. Phys.106 033908
[33] Li P, Jiang E Y and Bai H L 2010 J. Phys. D: Appl. Phys. 43 265002
[34] Li P, Jin C, Jiang E Y and Bai H L 2010 J. Appl. Phys. 108 093921
[35] Helman J S and Abeles B 1976 Phys. Rev. Lett. 37 1429
[36] Degiorgi L, Wachter P and Ihle D 1987 Phys. Rev. B 35 9259
[37] Ziese M, Hohne R, Semmelhack H C, Reckentin H, Hong N H andEsquinazi P 2002 Eur. Phys. J. B 28 415
[38] Eerenstein W, Palstra T T M, Hibma T and Celotto S 2003 Phys. Rev.B 68 014428
[39] Bickford L R 1950 Phys. Rev. 78 449
[40] Palmer W 1963 Phys. Rev. 131 1057
[41] Li P, Jiang E Y and Bai H L 2010 Appl. Phys. Lett. 96 092502
[42] Ramos R, Arora S K and Shvets 2008 Phys. Rev. B 78 214402
[43] Venzke S, van Dover R B, Phillips J M, Gyorgy E M, Siegrist T, ChenC H,Werder D, Fleming R M, Felder R J, Coleman E and Opila R 1996J. Mater. Res. 11 1187
[44] Chakraverty S, Mitra S, Mandal K, Nambissan P M G and ChattopadhyayS 2005 Phys. Rev. B 71 024115
[45] Li P, Sun M Y, Jin C and Bai H L 2012 J. Phys. D: Appl. Phys. 45505001
[46] Jin C, Li P, Mi W B and Bai H L 2012 Europhys. Lett. 100 27006
[47] Penoyer R F and Bickford L R 1957 Phys. Rev. 108 271
[48] Bozorth R M, Tilden E F and Williams A J 1955 Phys. Rev. 99 1788
[49] Snyder G J, Hiskers R, Dicarolis S, BeasleyMR and Geballe T H 1996Phys. Rev. B 53 14434
[50] Walter T, Dorr K, Muller K H, Eckert D, Nenkov K, Hecker M,Lehmann M and Schultz L 2000 J. Magn. Magn. Mater. 222 175
[51] Ohta H, Kawamura K, Orita M, Hirano M, Sarukura N and Hosono H2000 Appl. Phys. Lett. 77 475
[52] Hwang D, Kang S H, Lim J H, Yang E J, Oh J Y, Yang J H and Park SJ 2005 Appl. Phys. Lett. 86 222101
[53] Bamiduro O, Mustafa H, Mundle R, Konda R B and Pradhan A K 2007Appl. Phys. Lett. 90 252108
[54] Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science287 1019
[55] Nielsen A, Brandlmaier A, Althammer M, KaiserW, Opel M, Simon J,Mader W, Goennenwein S T B and Gross R 2008 Appl. Phys. Lett. 93162510
[56] Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S,Avrutin V, Cho S J and Morkoc H 2005 J. Appl. Phys. 98 041301
[57] Sze S M 1981 Physics of Semiconductor Devices (New York: Wiley)
[58] Ziese M, K¨ohler U, Bollero A, H¨ohne R and Esquinazi P 2005 Phys.Rev. B 71 180406
[59] Li P, Guo B L and Bai H L 2011 J. Appl. Phys. 109 013908
[60] Li P, Guo B L and Bai H L 2011 Europhys. Lett. 94 57007
[61] Mi W B, Jiang E Y and Bai H L 2008 Appl. Phys. Lett. 93 132504
[62] Qu T L, Zhao Y G, Tian H F, Xiong C M, Guo S M and Li J Q 2007Appl. Phys. Lett. 90 223514
[63] Chen Y F and Ziese M 2007 J. Phys. D: Appl. Phys. 40 3271
[64] Hu G and Suzuki Y 2002 Phys. Rev. Lett. 89 272002
[65] Yanase Y and Siratori K 1984 J. Phys. Soc. Jpn. 53 312
[66] Zhou T F, Li G, Wang N Y, Wang B M, Lia X G and Chen Y 2006Appl. Phys. Lett. 88 232508
[67] Sheng Z G, Song W H, Sun Y P, Sun J R and Shen B G 2005 Appl.Phys. Lett. 87 032501
[68] Fan Z W, Li P, Zhang L T, Mi W B, Jiang E Y and Bai H L 2012 ThinSolid Films 520 3641
[69] Zhang L T, Li P, MiWB and Bai H L 2012 J. Magn. Magn. Mater. 3243731
[70] Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759
[71] Kanai T, Ohkoshi S I, Nakajima A,Watanabe T and K Hashimoto 2001Adv. Mater. 13 487
[72] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, ViehlandD, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, RabeK M, Wuttig M and Ramesh R 2003 Science 299 1719
[73] Yang S Y, Zavaliche F, Mohaddes-Ardabili L, Vaithyanathan V, SchlomD G, Lee Y J, Chu Y H, CruzMP, Zhan Q, Zhao T and Ramesh R 2005Appl. Phys. Lett. 87 102903
[74] Yu R, Yunoki S J, Dong S and Dagotto E 2009 Phys. Rev. B 80 125115
[75] Yu P, Lee J S, Okamoto S, Rossell M D, Huijben M, Yang C H, He Q,Zhang J X, Yang S Y, Lee M J, Ramasse Q M, Erni R, Chu Y H, ArenaD A, Kao C C, Martin L W and Ramesh R 2010 Phys. Rev. Lett. 105027201
[76] Liu X F, Li P, Jin C and Bai H L 2011 Appl. Phys. Lett. 99 182511
[77] Zhan Q, Yu R, Crane S P, Zheng H, Kisielowski C and Ramesh R 2006Appl. Phys. Lett. 89 172902
[78] Baena A, Brey L and Calder’on M J 2011 Phys. Rev. B 83 064424
[79] Niebieskikwiat D, Hueso L E, Borchers J A, Mathur N D and SalamonM B 2007 Phys. Rev. Lett. 99 247207
[80] Rudee M L, Margulies D T and Berkowitz A E 1997 Microsc. Microanal.3 126
[81] Lüders U, Bibes M, Bobo J F, Cantoni M, Bertacco R and FontcubertaJ 2005 Phys. Rev. B 71 134419
[82] Lebeugle D, Colson D, Forget A, Viret M, Bataille AMand A Gukasov2008 Phys. Rev. Lett. 100 227602
[83] Wang J, Scholl A, Zheng H, Ogale S B, Viehland D, Schlom D G,Spaldin N A, Rabe K M, Wuttig M, Mohaddes L, Neaton J, WaghmareU V, Zhao T and Ramesh R 2005 Science 307 1203
[84] Yang H, Jin C, Mi W B and Bai H L 2012 J. Appl. Phys. 112 063925
[1] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[2] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[3] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[4] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[5] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[6] Magnetic triangular bubble lattices in bismuth-doped yttrium iron garnet
Tao Lin(蔺涛), Chengxiang Wang(王承祥), Zhiyong Qiu(邱志勇), Chao Chen(陈超), Tao Xing(邢弢), Lu Sun(孙璐), Jianhui Liang(梁建辉), Yizheng Wu(吴义政), Zhong Shi(时钟), and Na Lei(雷娜). Chin. Phys. B, 2023, 32(2): 027505.
[7] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[8] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[9] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[10] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[11] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[12] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[13] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[14] Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors
Shan-Shan Chen(陈珊珊), Yang Yang(杨阳), and Fan Yang(杨帆). Chin. Phys. B, 2022, 31(8): 087303.
[15] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
No Suggested Reading articles found!