Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 047506    DOI: 10.1088/1674-1056/22/4/047506
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic structure and magnetic and optical properties of double perovskite Bi2FeCrO6 from first-principles investigation

Song Zhe-Wen (宋哲文)a b, Liu Bang-Gui (刘邦贵)a
a Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b School of Physics, Peking University, Beijing 100871, China
Abstract  Double perovskite Bi2FeCrO6, related with multiferroic BiFeO3, is very interesting because of its strong ferroelectricity and high magnetic Curie temperature beyond room temperature. We investigate its electronic structure and magnetic and optical properties by using a full-potential density-functional method. Our optimization shows that it is a robust ferrimagnetic semiconductor. This nonmetallic phase is formed due to crystal field splitting and spin exchange splitting, in contrast to previous studies. Spin exchange constants and optical properties are calculated. Our Monte Carlo magnetic Curie temperature is 450 K, much higher than previous calculated value and consistent with experimental results. Our study and analysis reveal that the main magnetic mechanism is an antiferromagnetic superexchange between Fe and Cr over the intermediate O atom. These result are useful to understanding such perovskite materials and exploring their potential applications.
Keywords:  magnetic materials      first principles calculation  
Received:  03 December 2012      Revised:  06 January 2013      Accepted manuscript online: 
PACS:  75.50.-y (Studies of specific magnetic materials)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  75.10.-b (General theory and models of magnetic ordering)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174359 and 10874232) and by the National Basic Research Program of China (Grant No. 2012CB932302).
Corresponding Authors:  Liu Bang-Gui     E-mail:  bgliu@iphy.ac.cn

Cite this article: 

Song Zhe-Wen (宋哲文), Liu Bang-Gui (刘邦贵) Electronic structure and magnetic and optical properties of double perovskite Bi2FeCrO6 from first-principles investigation 2013 Chin. Phys. B 22 047506

[1] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M and Ramesh R 2003 Science 299 1719
[2] Choi T, Lee S, Choi Y J, Kiryukhin V and Cheong S W 2009 Science. 324 63
[3] Ramazanoglu M, Laver M, Ratcliff II W, Watson S M, Chen W C, Jackson A, Kothapalli K, Lee S, Cheong S W and Kiryukhin1 V 2011 Phys. Rev. Lett. 107 207206
[4] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[5] Muller G M, Walowski J, Djordjevic M, Miao G X, Gupta A, Ramos A V, Gehrke K, Moshnyaga V, Samwer K, Schmalhorst J, Thomas A, Hutten A, Reiss G, Moodera J S and Munzenberg M 2009 Nat. Mater. 8 56
[6] de Groot R A, Mueller F M, van Engen P G and Buschow K H J 1983 Phys. Rev. Lett. 50 2024
[7] Park J H, Vescovo E, Kim H J, Kwon C, Ramesh R and Venkatesan T 1998 Nature 392 794
[8] Kobayashi K I, Kimura T, Sawada H, Terakura K and Tokura Y 1998 Nature 395 677
[9] Ueda T K K and Tabata H 1998 Science 280 1064
[10] Serrate D, de Teresa J M and Ibarra M R 2007 J. Phys.: Conden. Matter 19 023201 and references therein
[11] Opel M 2012 J. Phys. D 45 033001 and references therein
[12] Boschker H, Kautz J, Houwman E P, Siemons W, Blank D H A, Huijben M, Koster G, Vailionis A and Rijnders G 2012 Phys. Rev. Lett. 109 157207
[13] Hauser A J, Soliz J R, Dixit M, Williams R E A, Susner M A, Peters B, Mier L M, Gustafson T L, Sumption M D, Fraser H L, Woodward P M and Yang F Y 2012 Phys. Rev. B 85 161201(R)
[14] Walker H C, Fabrizi F, Paolasini L, de Bergevin F, Herrero-Martin J, Boothroyd A T, Prabhakaran D and McMorrow D F 2011 Science 333 1273
[15] Baettig P and Spaldin N A 2005 Appl. Phys. Lett. 86 012505
[16] Baettig P, Ederer C and Spaldin N A 2005 Phys. Rev. B 72 214105
[17] Nechache R, Harnagea C, Pignolet A, Normandin F, Veres T, Carignan L P and Menard D 2006 Appl. Phys. Lett. 89 102902
[18] Suchomel M R, Thomas C I, Allix M, Rosseinsky M J, Fogg A M and Thomas M F 2007 Appl. Phys. Lett. 90 112909
[19] Kim D H, Lee H N, Biegalski M D and Christen H M 2007 Appl. Phys. Lett. 91 042906
[20] Kamba S, Nuzhnyy D, Nechache R, Zaveta K, Niznansk D, Santav E, Harnagea C and Pignolet A 2008 Phys. Rev. B 77 104111
[21] Nechache R, Harnagea C, Carignan L P, Gautreau O, Pintilie L, Singh M P, Menard D, Fournier P, Alexe M and Pignolet A 2009 J. Appl. Phys. 105 061621
[22] Aissa B, Nechache R, Therriault D, Rosei F and Nedil M 2011 Appl. Phys. Lett. 99 183505
[23] Nechache R, Harnagea C and Pignolet A 2012 J. Phys.: Condens. Matter 24 096001
[24] Hohenberg P and Kohn W 1964 Phys. Rev.136 B864
[25] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[26] Blaha P, Schwarz K, Sorantin P and Trickey S B 1990 Comput. Phys. Commun. 59 399
[27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[29] Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
[30] MacDonald A H, Pickett W E and Koelling D D 1980 J. Phys. C 13 2675
[31] Singh D 1994 Plane Waves, Pseudopotentials and the LAPW Method (Boston: Kluwer Academic)
[32] Kunes J, Novak P, Schmid R, Blaha P and Schwarz K 2001 Phys. Rev. B 64 153102
[33] Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A M and Teller E 1953 J. Chem. Phys. 21 1087
[34] Binder K and Heermann D W 2002 Monte Carlo Simulation in Statistical Physics (Berlin: Springer)
[35] Ju S and Guo G Y 2008 Appl. Phys. Lett. 92 202504
[36] Goffinet M, Iniguez J and Ghosez P 2012 Phys. Rev. B 86 024415
[37] Gong S and Liu B G 2011 Phys. Lett. A 375 1477
[38] Gong S and Liu B G 2012 Chin. Phys. B 21 057104
[39] Guo S D and Liu B G 2012 Chin. Phys. B 21 017101
[40] Guo S D and Liu B G 2012 J. Phys.: Condens. Matter 24 045502
[1] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[2] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[3] Formation of L10-FeNi hard magnetic material from FeNi-based amorphous alloys
Yaocen Wang(汪姚岑), Ziyan Hao(郝梓焱), Yan Zhang(张岩), Xiaoyu Liang(梁晓宇), Xiaojun Bai(白晓军), and Chongde Cao(曹崇德). Chin. Phys. B, 2022, 31(4): 046301.
[4] First principles study of hafnium intercalation between graphene and Ir(111) substrate
Hao Peng(彭浩), Xin Jin(金鑫), Yang Song(宋洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2022, 31(10): 106801.
[5] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[6] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
[7] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[8] Oxygen vacancy control of electrical, optical, and magnetic properties of Fe0.05Ti0.95O2 epitaxial films
Qing-Tao Xia(夏清涛), Zhao-Hui Li(李召辉), Le-Qing Zhang(张乐清), Feng-Ling Zhang(张凤玲), Xiang-Kun Li(李祥琨), Heng-Jun Liu(刘恒均), Fang-Chao Gu(顾方超), Tao Zhang(张涛), Qiang Li(李强), and Qing-Hao Li(李庆浩). Chin. Phys. B, 2021, 30(11): 117701.
[9] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[10] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[11] Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2
Yang Wang(王杨), Xin Zhang(张忻), Yan-Qin Liu(刘燕琴), Jiu-Xing Zhang(张久兴), Ming Yue(岳明). Chin. Phys. B, 2020, 29(6): 067201.
[12] Anisotropic elastic properties and ideal uniaxial compressive strength of TiB2 from first principles calculations
Min Sun(孙敏), Chong-Yu Wang(王崇愚), Ji-Ping Liu(刘吉平). Chin. Phys. B, 2018, 27(7): 077103.
[13] Mn-based permanent magnets
Jinbo Yang(杨金波), Wenyun Yang(杨文云), Zhuyin Shao(邵珠印), Dong Liang(梁栋), Hui Zhao(赵辉), Yuanhua Xia(夏元华), Yunbo Yang(杨云波). Chin. Phys. B, 2018, 27(11): 117503.
[14] Serrated magnetic properties in metallic glass by thermal cycle
Myong-Chol Ri(李明哲), Sajad Sohrabi, Da-Wei Ding(丁大伟), Bang-Shao Dong(董帮少), Shao-Xiong Zhou(周少雄), Wei-Hua Wang(汪卫华). Chin. Phys. B, 2017, 26(6): 066101.
[15] Structure dependence of magnetic properties in yttrium iron garnet by metal-organic decomposition method
Yuan Liu(刘园), Xiang Wang(王翔), Jie Zhu(朱杰), Runsheng Huang(黄润生), Dongming Tang(唐东明). Chin. Phys. B, 2017, 26(5): 057501.
No Suggested Reading articles found!