Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 030312    DOI: 10.1088/1674-1056/22/3/030312
GENERAL Prev   Next  

Maximum confidence measurements via probabilistic quantum cloning

Zhang Wen-Hai (张文海)a, Yu Long-Bao (余龙宝)b, Cao Zhuo-Liang (曹卓良)b, Ye Liu (叶柳)c
a Department of Physics, Huainan Normal University, Huainan 232038, China;
b Department of Physics and Electronic Engineering, Hefei Teachers College, Hefei 230061, China;
c School of Physics and Material Science, Anhui University, Hefei 230039, China
Abstract  Probabilistic quantum cloning (PQC) cannot copy a set of linearly dependent quantum states. In this paper, we show that if incorrect copies are allowed to be produced, linearly dependent quantum states may also be cloned by the PQC. By exploiting this kind of PQC to clone a special set of three linearly dependent quantum states, we derive the upper bound of the maximum confidence measure of a set. An explicit transformation of the maximum confidence measure is presented.
Keywords:  probabilistic quantum cloning      quantum state discrimination      maximum confidence measurement  
Received:  09 June 2012      Revised:  30 July 2012      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.65.-w (Quantum mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074002, 61073048, and 11104057), the Natural Science Foundation of the Education Department of Anhui Province, China (Grant Nos. KJ2010ZD08 and KJ2012A245), and the Postgraduate Program of Huainan Normal University.
Corresponding Authors:  Zhang Wen-Hai     E-mail:  zhangwenhaianhui@yahoo.com.cn

Cite this article: 

Zhang Wen-Hai (张文海), Yu Long-Bao (余龙宝), Cao Zhuo-Liang (曹卓良), Ye Liu (叶柳) Maximum confidence measurements via probabilistic quantum cloning 2013 Chin. Phys. B 22 030312

[1] Chefles A 2000 Contemp. Phys. 41 401
[2] Barnett S M and Croke S 2009 Adv. Opt. Photon. 1 238
[3] Sedlák M 2009 Acta Phys. Slovaca. 59 653
[4] Gisin N, Ribordy G and Tittel W 2002 Rev. Mod. Phys. 74 145
[5] Scarani V, Bechmann-Pasquinucci H and Cerf N J 2009 Rev. Mod. Phys. 81 1301
[6] Helstrom C W 1976 Quantum Detection and Estimation Theory (New York) pp. 112, 113
[7] Ivanovic I D 1987 Phys. Lett. A 123 257
[8] Dieks D 1988 Phys. Lett. A 126 303
[9] Peres P 1988 Phys. Lett. A 128 19
[10] Jeager G 1995 Phys. Lett. A 197 83
[11] Barnett S M 2001 Phys. Rev. A 64 030303
[12] Herzog U and Bergou J A 2002 Phys. Rev. A 65 050305
[13] Chou C L and Hsu L Y 2003 Phys. Rev. A 68 042305
[14] Chou C L 2004 Phys. Rev. A 70 062316
[15] Qiu D 2008 Phys. Rev. A 77 012328
[16] Samsonov B F 2009 Phys. Rev. A 80 052305
[17] Lu Y, Coish N and Kaltenbaek R 2010 Phys. Rev. A 82 042340
[18] Jafarizadeh M A, Sufiani R and Mazhari K Y 2011 Phys. Rev. A 84 012102
[19] Sun Y, Hillery M and Bergou J A 2001 Phys. Rev. A 64 022311
[20] Sun Y, Bergou J A and Hillery M 2002 Phys. Rev. A 66 032315
[21] Rudolph T, Spekkens R W and Turner P S 2003 Phys. Rev. A 68 010301
[22] Feng Y, Duan R and Ying M 2004 Phys. Rev. A 70 012308
[23] Mimih J and Hillery M 2005 Phys. Rev. A 71 012329
[24] Bergou J A, Feldman E and Hillery M 2006 Phys. Rev. A 73 032107
[25] Wang G and Ying M 2006 Phys. Rev. A 73 042301
[26] Lu J, Zhou L and Kuang L M 2006 Chin. Phys. 15 1941
[27] Chen L B, Jin R B and Lu H 2008 Chin. Phys. B 17 778
[28] Zhang K J, Zhu P and Gao F 2011 Chin. Phys. B 20 100304
[29] Croke S 2006 Phys. Rev. Lett. 96 070401
[30] Mosley P J, Croke S and Walmsley I A 2006 Phys. Rev. Lett. 97 193601
[31] Herzog U 2009 Phys. Rev. A 79 032323
[32] Steudle G A, Knauer S and Herzog U 2011 Phys. Rev. A 83 050304
[33] Jiménez O, Solís-Prosser M A and Delgado A 2011 Phys. Rev. A 84 062315
[34] Croke S 2008 Phys. Rev. A 77 012113
[35] Simon C, Buzek V and Gisin N 2001 Phys. Rev. Lett. 87 170405
[36] Duan L M and Guo G C 1998 Phys. Rev. Lett. 80 4999
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Performance analysis of quantum key distribution using polarized coherent-states in free-space channel
Zengte Zheng(郑增特), Ziyang Chen(陈子扬), Luyu Huang(黄露雨),Xiangyu Wang(王翔宇), and Song Yu(喻松). Chin. Phys. B, 2023, 32(3): 030306.
[3] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[4] Engineering topological state transfer in four-period Su-Schrieffer-Heeger chain
Xi-Xi Bao(包茜茜), Gang-Feng Guo(郭刚峰), and Lei Tan(谭磊). Chin. Phys. B, 2023, 32(2): 020301.
[5] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[6] Novel traveling quantum anonymous voting scheme via GHZ states
Wenhao Zhao(赵文浩) and Min Jiang(姜敏). Chin. Phys. B, 2023, 32(2): 020303.
[7] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[8] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[9] Tolerance-enhanced SU(1,1) interferometers using asymmetric gain
Jian-Dong Zhang(张建东) and Shuai Wang(王帅). Chin. Phys. B, 2023, 32(1): 010306.
[10] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[11] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[12] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[13] Experimental demonstration of a fast calibration method for integrated photonic circuits with cascaded phase shifters
Junqin Cao(曹君勤), Zhixin Chen(陈志歆), Yaxin Wang(王亚新), Tianfeng Feng(冯田峰), Zhihao Li(李志浩), Zeyu Xing(邢泽宇), Huashan Li(李华山), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2022, 31(11): 114204.
[14] Fringe visibility and correlation in Mach-Zehnder interferometer with an asymmetric beam splitter
Yan-Jun Liu(刘彦军), Mei-Ya Wang(王美亚), Zhong-Cheng Xiang(相忠诚), and Hai-Bin Wu(吴海滨). Chin. Phys. B, 2022, 31(11): 110305.
[15] Passively stabilized single-photon interferometer
Hai-Long Liu(刘海龙), Min-Jie Wang(王敏杰), Jia-Xin Bao(暴佳鑫), Chao Liu(刘超), Ya Li(李雅), Shu-Jing Li(李淑静), and Hai Wang(王海). Chin. Phys. B, 2022, 31(11): 110306.
No Suggested Reading articles found!