Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 030311    DOI: 10.1088/1674-1056/22/3/030311
GENERAL Prev   Next  

Nonclassicality and decoherence of coherent superposition operation of photon subtraction and photon addition on squeezed state

Xu Li-Juan (徐莉娟), Tan Guo-Bin (谭国斌), Ma Shan-Jun (马善钧), Guo Qin (郭琴)
College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China
Abstract  The statistical properties of m-coherent superposition operation (μa+νa+)m on the single-mode squeezed vacuum state (M-SSVS) and its decoherence in a thermal environment have been studied. Converting the M-SSVS to a squeezed Hermite polynomial excitation state, we obtain a compact expression for the normalization factor of M-SSVS, which is the Legendre polynomial of the squeezing parameter. We also derive the explicit expression of Wigner function (WF) of M-SSVS, and find the negative region of WF in phase space. The decoherence effect on this state is then discussed by deriving the time evolution of the WF. Using the negativity of WF, the loss of nonclassicality has been discussed.
Keywords:  nonclassicality      decoherence      coherent superposition of photon subtraction and addition      Wigner function  
Received:  20 April 2012      Revised:  07 September 2012      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  05.30.-d (Quantum statistical mechanics)  
  42.50.Ar  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11047133), and the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20114BAB202004 and 2009GZW0006), and the Research Foundation of the Education Department of Jiangxi Province, China (Grant No. GJJ11390).
Corresponding Authors:  Ma Shan-Jun     E-mail:  shanjunma@126.com

Cite this article: 

Xu Li-Juan (徐莉娟), Tan Guo-Bin (谭国斌), Ma Shan-Jun (马善钧), Guo Qin (郭琴) Nonclassicality and decoherence of coherent superposition operation of photon subtraction and photon addition on squeezed state 2013 Chin. Phys. B 22 030311

[1] Kim M S 2008 J. Phys. B 41 133001
[2] Gardiner C and Zoller P 2000 Quantum Noise (Berlin: Springer)
[3] Aspachs M J, Calsamiglia R, Muñoz-Tapia R and Bagan E 2009 Phys. Rev. A 79 033834
[4] Marian P and Marian T A 1993 Phys. Rev. A 47 4487
[5] Marian P and Marian T A 1993 Phys. Rev. A 47 4474
[6] Fiurasek J and Cerf N J 2004 Phys. Rev. Lett. 93 063601
[7] Bouwmeester D, Ekert A and Zeilinger A 2000 The Physics of Quantum Information (Berlin: Springer-Verlag)
[8] Zavatta A, Viciani S and Bellini M 2004 Science 306 660
[9] Zavatta A, Viciani S and Bellini M 2005 Phys. Rev. A 72 023820
[10] Zavatta A, Parigi V and Bellini M 2007 Phys. Rev. A 75 052106
[11] Parigi V, Zavatta A, Kim M S and Bellini M 2007 Science. 317 1890
[12] Wenger J, Tualle-Brouri R and Grangier P 2004 Phys. Rev. Lett. 92 153601
[13] Neergaard-Nielsen J S, Nielsen B M, Hettich C, Momer K and Polzik E S 2006 Phys. Rev. Lett. 97 083604
[14] Ourjoumtsev A, Tualle-Brouri R, Laurat J and Grangier Ph 2006 Science 312 83
[15] Wakui K, Takahashi H, Furusawa A and Sasaki M 2007 Opt. Express 15 3568
[16] Dakna M, Anhut T, Opatrny T, Knoll L and Welsch D G 1997 Phys. Rev. A 55 3184
[17] Glancy S and Vasconcelos H M 2008 J. Opt. Soc. Am. B 25 712
[18] Spagnolo N, Vitelli C, Angelis T D, Sciarrino F and Martini F D 2009 Phys. Rev. A 80 032318
[19] Xu X X, Yuan H, C and Fan H Y 2011 Chin. Phys. B 20 024203
[20] Ourjoumtsev A, Dantan A, Tualle-Brouri R and Grangier Ph 2007 Phys. Rev. Lett. 98 030502
[21] Browne D E, Eisert J, Scheel S and Plenio M B 2003 Phys. Rev. A 67 062320
[22] García-Patrón R, Fiurášek J, Cerf N J, Wenger J, Tualle-Brouri R and Grangier P 2004 Phys. Rev. Lett. 93 130409
[23] Bartlett S D and Sanders B C 2002 Phys. Rev. A 65 042304
[24] Hu L Y and Fan H Y 2010 J. Mod. Opt. 57 1344
[25] Ma S J, Luo W W 2012 Chin. Phys. B 21 024203
[26] Liang B L, Meng X G and Wang J S 2007 Acta Phys. Sin. 56 2160 (in Chinese)
[27] Hu L Y and Fan H Y 2008 J. Opt. Soc. Am. B 25 1955
[28] Lee S Y, Ji S W, Kim H J and Nha H 2011 Phys. Rev. A 84 012302
[29] Hu L Y, Xu X X and Fan H Y 2010 J. Opt. Soc. Am. B 27 286
[30] Xu L J, Tan G B and Ma S J 2011 Opt. Commun. 284 3335
[31] Hu L Y and Fan H Y 2009 Opt. Commun. 282 4379
[32] Hu L Y, Xu X X, Wang Z S and Xu X F 2010 Phys. Rev. A 82 043842
[33] SudarshanE C G 1963 Phys. Rev. Lett. 10 277
[34] Methta C L 1967 Phys. Rev. Lett. 18 752
[35] Zhu K C, Li S X, Tang Y, Zheng X J and Tang H Q 2012 Chin. Phys. B 21 084204
[36] Fan H Y 1987 Phys. Lett. A 124 303
[1] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[2] Nonclassicality of photon-modulated spin coherent states in the Holstein—Primakoff realization
Xiaoyan Zhang(张晓燕), Jisuo Wang(王继锁), Lei Wang(王磊),Xiangguo Meng(孟祥国), and Baolong Liang(梁宝龙). Chin. Phys. B, 2022, 31(5): 054205.
[3] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[4] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[5] Margolus-Levitin speed limit across quantum to classical regimes based on trace distance
Shao-Xiong Wu(武少雄), Chang-Shui Yu(于长水). Chin. Phys. B, 2020, 29(5): 050302.
[6] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[7] The effect of phase fluctuation and beam splitter fluctuation on two-photon quantum random walk
Zijing Zhang(张子静), Feng Wang(王峰), Jie Song(宋杰), Yuan Zhao(赵远). Chin. Phys. B, 2020, 29(2): 020503.
[8] Quantum-classical correspondence and mechanical analysis ofa classical-quantum chaotic system
Haiyun Bi(毕海云), Guoyuan Qi(齐国元), Jianbing Hu(胡建兵), Qiliang Wu(吴启亮). Chin. Phys. B, 2020, 29(2): 020502.
[9] Nonclassicality of photon-modulated atomic coherent states in the Schwinger bosonic realization
Jisuo Wang(王继锁), Xiangguo Meng(孟祥国), and Xiaoyan Zhang(张晓燕). Chin. Phys. B, 2020, 29(12): 124213.
[10] Wigner function for squeezed negative binomial state and evolution of density operator for amplitude decay
Heng-Yun Lv(吕恒云), Ji-Suo Wang(王继锁), Xiao-Yan Zhang(张晓燕), Meng-Yan Wu(吴孟艳), Bao-Long Liang(梁宝龙), Xiang-Guo Meng(孟祥国). Chin. Phys. B, 2019, 28(9): 090302.
[11] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
[12] Negativity of Wigner function and phase sensitivity of an SU(1,1) interferometer
Chun-Li Liu(刘春丽), Li-Li Guo(郭丽丽), Zhi-Ming Zhang(张智明), Ya-Fei Yu(於亚飞). Chin. Phys. B, 2019, 28(6): 060704.
[13] A primary model of decoherence in neuronal microtubules based on the interaction Hamiltonian between microtubules and plasmon in neurons
Zuoxian Xiang(向左鲜), Chuanxiang Tang(唐传祥), Lixin Yan(颜立新). Chin. Phys. B, 2019, 28(4): 048701.
[14] Physics of quantum coherence in spin systems
Maimaitiyiming Tusun(麦麦提依明·吐孙), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2019, 28(2): 024204.
[15] Boundary states for entanglement robustness under dephasing and bit flip channels
Hong-Mei Li(李红梅), Miao-Di Guo(郭苗迪), Rui Zhang(张锐), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2019, 28(10): 100302.
No Suggested Reading articles found!