Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 030313    DOI: 10.1088/1674-1056/22/3/030313
GENERAL Prev   Next  

Two-qubit and three-qubit controlled gates with cross-Kerr nonlinearity

Zhao Rui-Tong (赵瑞通)a, Guo Qi (郭奇)b, Cheng Liu-Yong (程留永)b, Sun Li-Li (孙立莉)b, Wang Hong-Fu (王洪福)a, Zhang Shou (张寿)a
a Department of Physics, College of Science, Yanbian University, Yanji 133002, China;
b Center for the Condensed-Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin 150001, China
Abstract  Schemes for two-qubit and three-qubit controlled gates based on cross-Kerr nonlinearity are proposed in this paper. The success probability of these gates can be increased by the quantum nondemolition detectors which are used to judge which paths the signal photons pass through. These schemes are nearly deterministic and require no ancilla photon. The advantages of these gates over the existing ones include Less resource consumption and higher success probability, which make our schemes more feasible with current technology.
Keywords:  quantum controlled gates      cross-Kerr nonlinearity      quantum nondemolition detector  
Received:  30 July 2012      Revised:  10 September 2012      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61068001 and 11264042) and the Program for Chun Miao Excellent Talents of Department of Education of Jilin Province China (Grant No. 201316).
Corresponding Authors:  Zhang Shou     E-mail:  szhang@ybu.edu.cn

Cite this article: 

Zhao Rui-Tong (赵瑞通), Guo Qi (郭奇), Cheng Liu-Yong (程留永), Sun Li-Li (孙立莉), Wang Hong-Fu (王洪福), Zhang Shou (张寿) Two-qubit and three-qubit controlled gates with cross-Kerr nonlinearity 2013 Chin. Phys. B 22 030313

[1] Spiller T P, Munro W J, Barrett S D and Kok P 2005 Contemp. Phys. 46 407
[2] Tang S Q, Zhang D Y, Wang X W, Xie L J and Gao F 2011 Chin. Phys. B 20 040308
[3] Zhong W X, Cheng G L and Chen A X 2010 Chin. Phys. B 19 110501
[4] Shi H M, Yu Y F and Zhang Z M 2012 Chin. Phys. B 21 064205
[5] Knill E, Laflamme R and Milburn G J 2001 Nature 409 46
[6] Pittman T B, Jacobs B C and Franson J D 2001 Phys. Rev. A 64 062311
[7] Pittman T B, Jacobs B C and Franson J D 2002 Phys. Rev. Lett. 88 257902
[8] Bao X H, Chen T Y, Zhang Q, Yang J, Zhang H, Yang T and Pan J W 2007 Phys. Rev. Lett. 98 170502
[9] Hofmann H F and Takeuchi S 2002 Phys. Rev. A 66 024308
[10] Kiesel N, Schmid C, Weber U, Ursin R and Weinfurter H 2005 Phys. Rev. Lett. 95 210505
[11] Wang H F, Shao X Q, Zhao Y F, Zhang S and Hwang K 2010 J. Opt. Soc. Am. B 27 27
[12] Cao S and Fang M F 2006 Chin. Phys. 15 276
[13] Gong Y X, Guo G C and Ralph T C 2008 Phys. Rev. A 78 012305
[14] Barrett S D, Kok P, Nemoto K, Beausoleil R G, Munro W J and Spiller T P 2005 Phys. Rev. A 71 060302
[15] Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
[16] Guo Q, Bai J, Cheng L Y, Shao X Q, Wang H F and Zhang S 2011 Phys. Rev. A 83 054303
[17] Kok P 2008 Phys. Rev. A 77 013808
[18] Xia Y, Song J, Lu P M and Song H S 2011 J. Phys. B 44 025503
[19] Xiu X M, Dong L, Gao Y J and Yi X X 2012 Quantum Inf. Comput. 12 0159
[20] Lin Q and Li J 2009 Phys. Rev. A 79 022301
[21] Munro W J, Nemoto K, Spiller T P, Barrett S D, Kok P and Beausoleil R G 2005 J. Opt. B: Quantum Semiclass. Opt. 7 S135
[22] Kok P, Munro W J, Nemoto K, Ralph T C, Dowing J P and Milburn G J 2007 Rev. Mod. Phys. 79 135
[23] Kok P, Lee H and Dowling J P 2002 Phys. Rev. A 66 063814
[24] Hofmann H F, Kojima K, Takeuchi S and Sasaki K 2003 J. Opt. B 5 218
[25] Wang X W, Zhang D Y, Tang S Q, Xie L J, Wang Z Y and Kuang L M 2012 Phys. Rev. A 85 052326
[26] He B, Ren Y H and Bergou J A 2009 Phys. Rev. A 79 052323
[27] Wittmann C, Andersen U L, Takeoka M, Sych D and Leuchs G 2010 Phys. Rev. A 81 062338
[1] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[2] Efficient entanglement concentration for arbitrary less-entangled NOON state assisted by single photons
Lan Zhou(周澜) and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2016, 25(2): 020308.
[3] Bidirectional transfer of quantum information for unknown photons via cross-Kerr nonlinearity and photon-number-resolving measurement
Jino Heo, Chang-Ho Hong, Dong-Hoon Lee, Hyung-Jin Yang. Chin. Phys. B, 2016, 25(2): 020306.
[4] Bidirectional quantum teleportation of unknown photons using path-polarization intra-particle hybrid entanglement and controlled-unitary gates via cross-Kerr nonlinearity
Jino Heo, Chang-Ho Hong, Jong-In Lim, Hyung-Jin Yang. Chin. Phys. B, 2015, 24(5): 050304.
[5] Generation of hyperentangled four-photon cluster state via cross-Kerr nonlinearity
Yan Xiang (闫香), Yu Ya-Fei (於亚飞), Zhang Zhi-Ming (张智明). Chin. Phys. B, 2014, 23(6): 060306.
[6] Complete four-photon cluster-state analyzer based on cross-Kerr nonlinearity
Wang Zhi-Hui (王志会), Zhu Long (朱龙), Su Shi-Lei (苏石磊), Guo Qi (郭奇), Cheng Liu-Yong (程留永), Zhu Ai-Dong (朱爱东), Zhang Shou (张寿). Chin. Phys. B, 2013, 22(9): 090309.
[7] Efficient three-step entanglement concentration for an arbitrary four-photon cluster state
Si Bin (司斌), Su Shi-Lei (苏石磊), Sun Li-Li (孙立莉), Cheng Liu-Yong (程留永), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2013, 22(3): 030305.
[8] Generating a four-photon polarization-entangled cluster state with homodyne measurement via cross-Kerr nonlinearity
Su Shi-Lei(苏石磊), Wang Yuan(王媛), Guo Qi(郭奇), Wang Hong-Fu(王洪福), and Zhang Shou(张寿) . Chin. Phys. B, 2012, 21(4): 044205.
[9] A realizable multi-bit dense coding scheme with an Einstein–Podolsky–Rosen channel
Guo Qi (郭奇), Cheng Liu-Yong (程留永), Wang Hong-Fu (王洪福), Zhang Shou (张寿), Yeon Kyu-Hwang. Chin. Phys. B, 2012, 21(10): 100301.
[10] A nearly deterministic scheme for generation of multiphoton GHZ states with weak cross-Kerr nonlinearity
Wang Yi(王奕), Ye Liu(叶柳), and Fang Bao-Long(方保龙) . Chin. Phys. B, 2011, 20(10): 100313.
[11] Generation of a four-particle entangled state via cross-Kerr nonlinearity
Zhao Li-Fang(赵丽芳), Lai Bo-Hui(赖柏辉), Mei Feng(梅锋), Yu Ya-Fei(於亚飞), Feng Xun-Li(冯勋立), and Zhang Zhi-Ming(张智明). Chin. Phys. B, 2010, 19(9): 094207.
No Suggested Reading articles found!