Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 117305    DOI: 10.1088/1674-1056/21/11/117305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Broadband light-emitting from multilayer-stacked InAs/GaAs quantum dots

Liu Ning (刘宁)a b, Jin Peng (金鹏)a, Wang Zhan-Guoa
a Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
b Electricity Examination Department, Patent Examination Cooperation Center of the Patent Office, State Intellectual Property Office, Beijing 100190, China
Abstract  We report the effect of the GaAs spacer layer thickness on the photoluminescence (PL) spectral bandwidth of InAs/GaAs self-assembled quantum dots (QDs). A PL spectral bandwidth of 158 nm is achieved with a five-layer stack of InAs QDs which has a 11-nm thick GaAs spacer layer. We investigate the optical and the structural properties of the multilayer-stacked InAs/GaAs QDs with different GaAs spacer layer thicknesses. The results show that the spacer thickness is a key parameter affecting the multi-stacked InAs/GaAs QDs for wide-spectrum emission.
Keywords:  quantum dots      broadband spectrum      superluminescent diode  
Received:  05 June 2012      Revised:  19 July 2012      Accepted manuscript online: 
PACS:  73.21.La (Quantum dots)  
  78.67.Hc (Quantum dots)  
  85.60.Jb (Light-emitting devices)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2006CB604904) and the National Natural Science Foundation of China (Grant Nos. 60976057, 60876086, and 60776037).
Corresponding Authors:  Jin Peng     E-mail:  pengjin@semi.ac.cn

Cite this article: 

Liu Ning (刘宁), Jin Peng (金鹏), Wang Zhan-Guo (王占国 ) Broadband light-emitting from multilayer-stacked InAs/GaAs quantum dots 2012 Chin. Phys. B 21 117305

[1] Jin P, Lv X Q, Liu N, Zhang Z Y and Wang Z G 2010 The 3rd IEEE International NanoElectornics Conference, January 3-8, Hongkong, China, Vol. 1-2, p. 304
[2] Zhang Z Y, Hogg R A, Lv X Q and Wang Z G 2010 Advances in Optics and Photonics 2 201
[3] Zhang Z Y, Jiang Q, Luxmoore I J and Hogg R A 2009 Nanotechnology 20 055204
[4] Djie H S, Ooi B S, Fang X M, Wu Y, Fastenau J M, Liu W K and Hopkinson M 2007 Opt. Lett. 32 44
[5] Rossetti M, Li L H, Markus A, Fiore A, Occhi L, Velez C, Mikhrin S, Krestnikov I and Kovsh A 2007 IEEE J. Quantum Electron. 43 676
[6] Ngo C Y, Yoon S F, Fan W J and Chua S J 2007 Appl. Phys. Lett. 91 191901
[7] Heo D C, Song J D, Choi W J, Lee J L, Jung J C and Han I K 2003 Electronics Letters 39 863
[8] Li X K, Liang D C, Jin P, An Q, Wei H, Wu J and Wang Z G 2012 Chin. Phys. B 21 028102
[9] Liang D C, An Q, Jin P, Li X K, Wei H, Wu J and Wang Z G 2011 Chin. Phys. B 20 108503
[10] Kovsh A, Krestnikov I, Livshits D, Mikhrin S, Weimert J and Zhukov A 2007 Opt. Lett. 32 793
[11] Inoue T, Asada M, Yasuoka N, Kojima O, Kita T and Wada O 2010 Appl. Phys. Lett. 96 211906
[12] Lv X Q, Jin P, Wang W Y and Wang Z G 2010 Opt. Express 18 8916
[13] Wu J, Lü X Q, Jin P, Meng X Q and Wang Z G 2011 Chin. Phys. B 20 064202
[14] Lü X Q, Jin P and Wang Z G 2010 Chin. Phys. B 19 018104
[15] Lv X Q, Jin P and Wang Z G 2010 IEEE Photonics Technology Letters 22 1799
[16] Sun Z Z, Ding D, Gong Q, Zhou W, Xu B and Wang Z G 1999 Optical and Quantum Electronics 31 1235
[17] Zhang Z Y, Wang Z G, Xu B, Jin P, Sun Z Z and Liu F Q 2004 IEEE Photon. Technol. Lett. 16 27
[18] Liu N, Jin P and Wang Z G 2005 Electronics Letters 41 1400
[19] Ray S K , Groom K M, Alexander R, Kennedy K, Liu H Y, Hopkinson M and Hogg R A 2006 J. Appl. Phys. 100 103105
[20] Chen S M, Zhou K J, Zhang Z Y, Childs D T D and Hugues M 2012 Appl. Phys. Lett. 100 041118
[21] Li L H, Rossetti M, Fiore A, Occhi L and Velez C 2005 Electronics Letters 41 41
[22] Lv X Q, Liu N, Jin P and Wang Z G 2008 IEEE Photon. Technol. Lett. 20 1742
[23] Meng X Q, Jin P, Liang Z M, Liu F Q, Wang Z G and Zhang Z Y 2010 J. Appl. Phys. 108 103515
[24] Haffouz S, Barrios P J, Normandin R, Poitras D and Lu Z 2012 Opt. Lett. 37 1103
[25] Wang J S, Yu S H, Lin Y R, Lin H H, Yang C S, Chen T T, Chen Y F, Shu G W, Shen J L, Hsiao R S, Chen J F and Chi J Y 2007 Nanotechnology 18 015401
[26] Xie Q and Madhukar A 1995 Phys. Rev. Lett. 75 2542
[27] Solomon G S, Trezza J A, Marshall A F and Harris J S 1996 Phys. Rev. Lett. 76 952
[28] Ilahi B, Sfaxi L, Hassen F, Salem B, Bremond G, Marty O, Bouzaiene L and Maaref H 2006 Materials Science and Engineering C 26 374
[29] Chan C H, Chen H S, Kao C W, Hsu H P and Huang Y S 2006 J. Appl. Phys. 100 064301
[30] Xu Z Y, Lu Z D, Yang X P, Yuan Z L, Zheng B Z, Xu J Z, Ge W K, Wang Y, Wang J and Chang L L 1996 Phys. Rev. B 54 11528
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[5] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[6] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[7] Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB
Hong Wang(王虹), Zunren Lv(吕尊仁), Shuai Wang(汪帅), Haomiao Wang(王浩淼), Hongyu Chai(柴宏宇), Xiaoguang Yang(杨晓光), Lei Meng(孟磊), Chen Ji(吉晨), and Tao Yang(杨涛). Chin. Phys. B, 2022, 31(9): 098104.
[8] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[9] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[10] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[11] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[12] Exciton emission dynamics in single InAs/GaAs quantum dots due to the existence of plasmon-field-induced metastable states in the wetting layer
Junhui Huang(黄君辉), Hao Chen(陈昊), Zhiyao Zhuo(卓志瑶), Jian Wang(王健), Shulun Li(李叔伦), Kun Ding(丁琨), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Desheng Jiang(江德生), Xiuming Dou(窦秀明), and Baoquan Sun(孙宝权). Chin. Phys. B, 2021, 30(9): 097805.
[13] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[14] Phase- and spin-dependent manipulation of leakage of Majorana mode into double quantum dot
Fu-Bin Yang(羊富彬), Gan Ren(任淦), and Lin-Guo Xie(谢林果). Chin. Phys. B, 2021, 30(7): 078505.
[15] Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇). Chin. Phys. B, 2021, 30(7): 077307.
No Suggested Reading articles found!