CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Broadband light-emitting from multilayer-stacked InAs/GaAs quantum dots |
Liu Ning (刘宁)a b, Jin Peng (金鹏)a, Wang Zhan-Guoa |
a Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; b Electricity Examination Department, Patent Examination Cooperation Center of the Patent Office, State Intellectual Property Office, Beijing 100190, China |
|
|
Abstract We report the effect of the GaAs spacer layer thickness on the photoluminescence (PL) spectral bandwidth of InAs/GaAs self-assembled quantum dots (QDs). A PL spectral bandwidth of 158 nm is achieved with a five-layer stack of InAs QDs which has a 11-nm thick GaAs spacer layer. We investigate the optical and the structural properties of the multilayer-stacked InAs/GaAs QDs with different GaAs spacer layer thicknesses. The results show that the spacer thickness is a key parameter affecting the multi-stacked InAs/GaAs QDs for wide-spectrum emission.
|
Received: 05 June 2012
Revised: 19 July 2012
Accepted manuscript online:
|
PACS:
|
73.21.La
|
(Quantum dots)
|
|
78.67.Hc
|
(Quantum dots)
|
|
85.60.Jb
|
(Light-emitting devices)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2006CB604904) and the National Natural Science Foundation of China (Grant Nos. 60976057, 60876086, and 60776037). |
Corresponding Authors:
Jin Peng
E-mail: pengjin@semi.ac.cn
|
Cite this article:
Liu Ning (刘宁), Jin Peng (金鹏), Wang Zhan-Guo (王占国 ) Broadband light-emitting from multilayer-stacked InAs/GaAs quantum dots 2012 Chin. Phys. B 21 117305
|
[1] |
Jin P, Lv X Q, Liu N, Zhang Z Y and Wang Z G 2010 The 3rd IEEE International NanoElectornics Conference, January 3-8, Hongkong, China, Vol. 1-2, p. 304
|
[2] |
Zhang Z Y, Hogg R A, Lv X Q and Wang Z G 2010 Advances in Optics and Photonics 2 201
|
[3] |
Zhang Z Y, Jiang Q, Luxmoore I J and Hogg R A 2009 Nanotechnology 20 055204
|
[4] |
Djie H S, Ooi B S, Fang X M, Wu Y, Fastenau J M, Liu W K and Hopkinson M 2007 Opt. Lett. 32 44
|
[5] |
Rossetti M, Li L H, Markus A, Fiore A, Occhi L, Velez C, Mikhrin S, Krestnikov I and Kovsh A 2007 IEEE J. Quantum Electron. 43 676
|
[6] |
Ngo C Y, Yoon S F, Fan W J and Chua S J 2007 Appl. Phys. Lett. 91 191901
|
[7] |
Heo D C, Song J D, Choi W J, Lee J L, Jung J C and Han I K 2003 Electronics Letters 39 863
|
[8] |
Li X K, Liang D C, Jin P, An Q, Wei H, Wu J and Wang Z G 2012 Chin. Phys. B 21 028102
|
[9] |
Liang D C, An Q, Jin P, Li X K, Wei H, Wu J and Wang Z G 2011 Chin. Phys. B 20 108503
|
[10] |
Kovsh A, Krestnikov I, Livshits D, Mikhrin S, Weimert J and Zhukov A 2007 Opt. Lett. 32 793
|
[11] |
Inoue T, Asada M, Yasuoka N, Kojima O, Kita T and Wada O 2010 Appl. Phys. Lett. 96 211906
|
[12] |
Lv X Q, Jin P, Wang W Y and Wang Z G 2010 Opt. Express 18 8916
|
[13] |
Wu J, Lü X Q, Jin P, Meng X Q and Wang Z G 2011 Chin. Phys. B 20 064202
|
[14] |
Lü X Q, Jin P and Wang Z G 2010 Chin. Phys. B 19 018104
|
[15] |
Lv X Q, Jin P and Wang Z G 2010 IEEE Photonics Technology Letters 22 1799
|
[16] |
Sun Z Z, Ding D, Gong Q, Zhou W, Xu B and Wang Z G 1999 Optical and Quantum Electronics 31 1235
|
[17] |
Zhang Z Y, Wang Z G, Xu B, Jin P, Sun Z Z and Liu F Q 2004 IEEE Photon. Technol. Lett. 16 27
|
[18] |
Liu N, Jin P and Wang Z G 2005 Electronics Letters 41 1400
|
[19] |
Ray S K , Groom K M, Alexander R, Kennedy K, Liu H Y, Hopkinson M and Hogg R A 2006 J. Appl. Phys. 100 103105
|
[20] |
Chen S M, Zhou K J, Zhang Z Y, Childs D T D and Hugues M 2012 Appl. Phys. Lett. 100 041118
|
[21] |
Li L H, Rossetti M, Fiore A, Occhi L and Velez C 2005 Electronics Letters 41 41
|
[22] |
Lv X Q, Liu N, Jin P and Wang Z G 2008 IEEE Photon. Technol. Lett. 20 1742
|
[23] |
Meng X Q, Jin P, Liang Z M, Liu F Q, Wang Z G and Zhang Z Y 2010 J. Appl. Phys. 108 103515
|
[24] |
Haffouz S, Barrios P J, Normandin R, Poitras D and Lu Z 2012 Opt. Lett. 37 1103
|
[25] |
Wang J S, Yu S H, Lin Y R, Lin H H, Yang C S, Chen T T, Chen Y F, Shu G W, Shen J L, Hsiao R S, Chen J F and Chi J Y 2007 Nanotechnology 18 015401
|
[26] |
Xie Q and Madhukar A 1995 Phys. Rev. Lett. 75 2542
|
[27] |
Solomon G S, Trezza J A, Marshall A F and Harris J S 1996 Phys. Rev. Lett. 76 952
|
[28] |
Ilahi B, Sfaxi L, Hassen F, Salem B, Bremond G, Marty O, Bouzaiene L and Maaref H 2006 Materials Science and Engineering C 26 374
|
[29] |
Chan C H, Chen H S, Kao C W, Hsu H P and Huang Y S 2006 J. Appl. Phys. 100 064301
|
[30] |
Xu Z Y, Lu Z D, Yang X P, Yuan Z L, Zheng B Z, Xu J Z, Ge W K, Wang Y, Wang J and Chang L L 1996 Phys. Rev. B 54 11528
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|