Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 117306    DOI: 10.1088/1674-1056/21/11/117306
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Model of tunneling through periodic array of quantum dots in a magnetic field

I. Yu. Popov, S. A. Osipov
St. Petersburg National Research University of Information Technologies,Mechanics and Optics, Kronverkskiy, 49, St. Petersburg 197101, Russia
Abstract  Two-dimensional periodic array of quantum dots with two laterally coupled leads in a magnetic field is considered. The model of electron transport through the system based on the theory of self-adjoint extensions of symmetric operators is suggested. We obtain the formula for the transmission coefficient and investigate its dependence on the magnetic field.
Keywords:  tunneling      nanostructure      operator extension theory  
Received:  19 March 2012      Revised:  26 July 2012      Accepted manuscript online: 
PACS:  73.23.Ad (Ballistic transport)  
  02.30.Tb (Operator theory)  
Fund: Project supported by the Federal Targeted Program "Scientific and Educational Human Resources for Innovation-Driven Russia" (Grant Nos. P689 NK-526P, 14.740.11.0879, 16.740.11.0030, and 2012-1.2.2-12-000-1001-047), the Russian Foundation for Basic Researches (Grant No. 11-08-00267), and the Federal Targeted Program "Researches and Development in the Priority Directions Developments of a Scientific and Technological Complex of Russia 2007-2013" (Grant No. 07.514.11.4146).
Corresponding Authors:  I. Yu. Popov     E-mail:  popov@mail.ifmo.ru

Cite this article: 

I. Yu. Popov, S. A. Osipov Model of tunneling through periodic array of quantum dots in a magnetic field 2012 Chin. Phys. B 21 117306

[1] Hofstadter D R 1976 Phys. Rev. B 14 2239
[2] Albeverio S, Geyler V A, Grishanov E N and Ivanov D A 2010 Int. J. Theor. Phys. 49 728
[3] Geyler V A, Popov I Yu, Popov A V and Ovechkina A A 2000 Chaos Soliton. Fract. 11 281
[4] Jaksch D and Zoller P 2003 New J. Phys. 5 56
[5] Demkov Yu N and Ostrovskiy V N 1975 Method of Zero-range Potentials in Atomic Physics (Leningrad: Leningrad State Univ. Publishing House)
[6] Block I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[7] Geyler V A 1992 St. Petersburg Math. J. 3 489
[8] Geyler V A and Popov I Yu 1994 Z. Phys. B 93 437
[9] Geyler V A and Popov I Yu 1995 Z. Phys. B 98 473
[10] Sols F 1992 Ann. Phys. 214 386
[11] Geyler V A and Popov I Yu 1996 Theor. Math. Phys. 107 12
[12] Martin G, Yafyasov A M and Pavlov B S 2010 Nanosystems: Phys. Chem. Math. 1 (1) 108
[13] Reed M and Simon B 1972 Methods of Modern Mathematical Physics I: Functional Analysis (New York: Academic Press)
[14] Malkin I A and Manko V I 1979 Dynamical Symmetries and Coherent States of Quantum Systems (Moscow: Nauka)
[15] Bateman H and Erdelyi A 1953 Higher Transcendental Functions (vol. 1) (New York: McGraw-Hill)
[16] Albeverio S, Gesztesy F, Hoegh-Krohn R and Holden H 2005 Solvable Models in Quantum Mechanics 2nd edn. (Providence, R.I.: AMS Chelsea Publishing )
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[3] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[4] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[5] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[6] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[7] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[8] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[9] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[10] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[11] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[12] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[13] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[14] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[15] Anisotropic refraction and valley-spin-dependent anomalous Klein tunneling in a 1T'-MoS2-based p-n junction
Fenghua Qi(戚凤华) and Xingfei Zhou(周兴飞). Chin. Phys. B, 2022, 31(7): 077301.
No Suggested Reading articles found!