Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 117304    DOI: 10.1088/1674-1056/21/11/117304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Improvement of doping efficiency in Mg-Al0.14Ga0.86N/GaN superlattices with AlN interlayer by suppressing donor-like defects

Liu Ning-Yang (刘宁炀), Liu Lei (刘磊), Wang Lei (王磊), Yang Wei (杨薇), Li Ding (李丁), Li Lei (李磊), Cao Wen-Yu (曹文彧), Lu Ci-Mang (鲁辞莽), Wan Cheng-Hao (万成昊), Chen Wei-Hua (陈伟华), Hu Xiao-Dong (胡晓东 )
State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
Abstract  We investigate the mechanism for the improvement of p-type doping efficiency in Mg-Al0.14Ga0.86N/GaN superlattices (SLs). It is shown that the hole concentration of SLs increases by nearly an order of magnitude, from 1.1× 1017 to 9.3× 1017 cm-3, when an AlN interlayer is inserted to modulate the strains. Schrödinger-Poisson self-consistent calculations suggest that such an increase could be attributed to the reduction of donor-like defects caused by the strain modulation induced by the AlN interlayer. Additionally, the donor-acceptor pair emission exhibits a remarkable decrease in intensity of the cathodoluminescence spectrum for SLs with an AlN interlayer. This supports the theoretical calculations and indicates that, the strain modulation of SLs could be beneficial to the donor-like defect suppression as well as the p-type doping efficiency improvement.
Keywords:  superlattice      doping efficiency      strain modulation      nitrogen vacancy  
Received:  05 April 2012      Revised:  03 July 2012      Accepted manuscript online: 
PACS:  73.21.Cd (Superlattices)  
  71.55.Eq (III-V semiconductors)  
  78.66.Fd (III-V semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61076012, 61076013, and 51102003), the National High Technology Research and Development Program of China (Grant No. 2007AA03Z403), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20100001120014), and the National Basic Research Program of China (Grant No. 2012CB619304).
Corresponding Authors:  Hu Xiao-Dong     E-mail:  huxd@pku.edu.cn

Cite this article: 

Liu Ning-Yang (刘宁炀), Liu Lei (刘磊), Wang Lei (王磊), Yang Wei (杨薇), Li Ding (李丁), Li Lei (李磊), Cao Wen-Yu (曹文彧), Lu Ci-Mang (鲁辞莽), Wan Cheng-Hao (万成昊), Chen Wei-Hua (陈伟华), Hu Xiao-Dong (胡晓东 ) Improvement of doping efficiency in Mg-Al0.14Ga0.86N/GaN superlattices with AlN interlayer by suppressing donor-like defects 2012 Chin. Phys. B 21 117304

[1] Akasaki I, Amano H, Kito M and Hiramatsu K 1991 J. Lumin. 48 666
[2] Nakamura S, Mukai T, Senoh M and Iwasa N 1992 Jpn. J. Appl. Phys. 31 L139
[3] Jain S C, Willander M, Narayan J and Van Overstraeten R 2000 J. Appl. Phys. 87 965
[4] Schubert E F, Grieshaber W and Goepfert I D 1996 Appl. Phys. Lett. 69 3737
[5] Kozodoy P, Hansen M, DenBaars S P and Mishra U K 1999 Appl. Phys. Lett. 74 3681
[6] Stampfl C and Van de Walle C G 2002 Phys. Rev. B 65 155212
[7] Kaufmann U, Schlotter P, Obloh H, Köhler K and Maier M 2000 Phys. Rev. B 62 10867
[8] Wang L, Li R, Li D, Liu N Y, Liu L, Chen W H, Wang C D, Yang Z J and Hu X D 2010 Appl. Phys. Lett. 96 061110
[9] Pereira S, Correia M R, Pereira E, O'Donnell K P, Martin R W, White M E, Alves E, Sequeira A D and Franco N 2002 Mater. Sci. Eng. B 93 163
[10] Guo X, Wang Y T, Zhao D G, Jiang D S, Zhu J J, Liu Z S, Wang H, Zhang S M, Qiu Y X, Xu K and Yang H 2010 Chin. Phys. B 19 076804
[11] Snider G 2005 1D Poisson-Schrödinger Solver (Department of Electrical Engineering, University of Notre Dame) available at http://www.nd.edu/~ gsnider/
[12] Ridley B K, Schaff W J and Eastman L F 2003 J. Appl. Phys. 94 3972
[13] Ambacher O, Majewski J, Miskys C, Link A, Hermann M, Eickhoff M, Stutzmann M, Bernadini F, Fiorentini V, Tilak V, Schaff B and Eastman L F 2002 J. Phys.: Condens. Matter 14 3399
[14] Tanaka T, Watanabe A, Amano H, Kobayashi Y, Akasaki I, Yamazaki S and Koike M 1994 Appl. Phys. Lett. 65 593
[15] Vurgaftman I and Meyer J R 2003 J. Appl. Phys. 94 3675
[16] Sze S M and Ng K K 2007 Physics of Semiconductor Devices (3rd edn.) (Hoboken: John Wiley & Sons) p. 19
[17] Song J J and Shan W 1998 Group III Nitride Semiconductor Compounds: Physics and Applications (edited by Gill B) (Oxford: Clarendon) p. 182
[18] Cai D J and Guo G Y 2010 J. Appl. Phys. 107 103533
[19] Hogsed M R, Yeo Y K, Ahoujja M, Ryu M Y, Petrosky J C and Hengehold R L 2005 Appl. Phys. Lett. 86 261906
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[3] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[4] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[5] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[6] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[7] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[8] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[9] Development of ZnTe film with high copper doping efficiency for solar cells
Xin-Lu Lin(林新璐), Wen-Xiong Zhao(赵文雄), Qiu-Chen Wu(吴秋晨), Yu-Feng Zhang(张玉峰), Hasitha Mahabaduge, and Xiang-Xin Liu(刘向鑫). Chin. Phys. B, 2022, 31(10): 108802.
[10] Excellent thermoelectric performance predicted in Sb2Te with natural superlattice structure
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chaoyu He(何朝宇), Jin Li(李金), Chunxiao Zhang(张春小), and Jianxin Zhong(钟建新). Chin. Phys. B, 2021, 30(12): 128401.
[11] Moiré superlattice modulations in single-unit-cell FeTe films grown on NbSe2 single crystals
Han-Bin Deng(邓翰宾), Yuan Li(李渊), Zili Feng(冯子力), Jian-Yu Guan(关剑宇), Xin Yu(于鑫), Xiong Huang(黄雄), Rui-Zhe Liu(刘睿哲), Chang-Jiang Zhu(朱长江), Limin Liu(刘立民), Ying-Kai Sun(孙英开), Xi-Liang Peng(彭锡亮), Shuai-Shuai Li(李帅帅), Xin Du(杜鑫), Zheng Wang(王铮), Rui Wu(武睿), Jia-Xin Yin(殷嘉鑫), You-Guo Shi(石友国), and Han-Qing Mao(毛寒青). Chin. Phys. B, 2021, 30(12): 126801.
[12] Extended phase diagram of La1-xCaxMnO3 by interfacial engineering
Kexuan Zhang(张可璇), Lili Qu(屈莉莉), Feng Jin(金锋), Guanyin Gao(高关胤), Enda Hua(华恩达), Zixun Zhang(张子璕), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2021, 30(12): 126802.
[13] Temperature effects of GaAs/Al0.45Ga0.55As superlattices on chaotic oscillation
Xiao-Peng Luo(罗晓朋), Yan-Fei Liu(刘延飞), Dong-Dong Yang(杨东东), Cheng Chen(陈诚), Xiu-Jian Li(李修建), and Jie-Pan Ying(应杰攀). Chin. Phys. B, 2021, 30(10): 106805.
[14] Electric gating of the multichannel conduction in LaAlO3/SrTiO3 superlattices
Shao-Jin Qi(齐少锦), Xuan Sun(孙璇), Xi Yan(严曦), Hui Zhang(张慧), Hong-Rui Zhang(张洪瑞), Jin-E Zhang(张金娥), Hai-Lin Huang(黄海林), Fu-Rong Han(韩福荣), Jing-Hua Song(宋京华), Bao-Gen Shen(沈保根), and Yuan-Sha Chen(陈沅沙). Chin. Phys. B, 2021, 30(1): 017301.
[15] Optical conductivity of twisted bilayer graphene near the magic angle
Lu Wen(文露), Zhiqiang Li(李志强), and Yan He(贺言). Chin. Phys. B, 2021, 30(1): 017303.
No Suggested Reading articles found!