INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Phase- and spin-dependent manipulation of leakage of Majorana mode into double quantum dot |
Fu-Bin Yang(羊富彬)†, Gan Ren(任淦), and Lin-Guo Xie(谢林果) |
Department of Physics and Key Laboratory of Photonic and Optical Detection in Civil Aviation, Civil Aviation Flight University of China, Guanghan 618307, China |
|
|
Abstract We present a phase- and spin-dependent manipulation of leakage of a Majorana mode into a double quantum dot. We study the density of states (DOS) to show the effect of phase change factor on the Majorana leakage into (out) of a double quantum dot. The DOS is derived from the Green's function of the quantum dot by the equation of motion method, and exhibits a formant structure when φ=0,2π and a resonance shape when φ=0.5π and 1.5π. Also, it changes more strongly under the spin-polarized coefficient than the non-polarized lead. Such a theoretical model can be modified to explore the spin-dependent effect in the hybrid Majorana quantum dot system.
|
Received: 31 October 2020
Revised: 17 January 2021
Accepted manuscript online: 01 February 2021
|
PACS:
|
85.75.Mm
|
(Spin polarized resonant tunnel junctions)
|
|
91.62.Bf
|
(Agricultural systems)
|
|
72.10.Fk
|
(Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect))
|
|
Fund: Project supported by the Science Foundation of Civil Aviation Flight University of China (Grant No. JG2019-19). |
Corresponding Authors:
Fu-Bin Yang
E-mail: fbinyang@qq.com
|
Cite this article:
Fu-Bin Yang(羊富彬), Gan Ren(任淦), and Lin-Guo Xie(谢林果) Phase- and spin-dependent manipulation of leakage of Majorana mode into double quantum dot 2021 Chin. Phys. B 30 078505
|
[1] Wang J and Zhang S C 2017 Nat. Mater. 16 1062 [2] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003 [3] Ruiz-Tijerina D A, Vernek E, Dias da Silva L G G V and Egues J C 2015 Phys. Rev. B 91 115435 [4] Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083 [5] Alicea J 2012 Rep. Prog. Phys. 75 076501 [6] Deng M T, Vaitiekėnas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygåd J, Krogstrup P and Marcus C M 2016 Science 354 1557 [7] Jiang Z T and Zhong C C 2016 Chin. Phys. B 25 067302 [8] Ptok A, Kobialka A and Domański T 2017 Phys. Rev. B 96 195430 [9] Fu L and Kane C L 2009 Phys. Rev. B 79 161408 [10] Cifuentes J D and Dias da Silva L G G V 2019 Phys. Rev. B 100 085429 [11] Li Ch An, Li J and Shen Sh Q 2019 Phys. Rev. B 99 100504 [12] Li Y, Li S X, Lidag H O, Deng G W, Cao G, Xiao M and Guo G P 2018 Chin. Phys. B 27 76105 [13] Roising H S and Simon S H 2018 Phys. Rev. B 97 115424 [14] Ricco L S, Marques Y, Dessotti F A, de Souza M and Seridonio A C 2016 Physica E 78 25 [15] Ueda A and Yokoyama T 2014 Phys. Rev. B 90 081405 [16] Ramos-Andrade J P, Orellana P A and Ulloa S E 2018 J. Phys.: Condens. Matter 30 045301 [17] Barański J, Kobialka A and Domański T 2017 J. Phys.: Condens. Matter 29 075603 [18] Zeng Q B, Chen Sh and Lü R 2016 Phys. Lett. A 380 951 [19] Silva J F, Dias da Silva L G G V and Vernek E 2020 Phys. Rev. B 101 075428 [20] Ricco L S, de Souza M, Figueira M S, Shelykh I A and Seridonio A C 2019 Phys. Rev. B 99 155159 [21] Wu S Q, He Z, Yan C H, et al. 2006 Acta Phys. Sin. 55 1413 (in Chinese) [22] Yang F B 2019 Physica E 109 164 [23] Liu J, Li K M, Chi F, et al. 2020 Chin. Phys. B 29 077302 [24] Ramos-Andrade J P, Orellana P A and Vernek E 2020 Phys. Rev. B 101 115403 [25] Yang F B 2019 Commun. Theor. Phys. 71 1024 [26] Yang F B 2020 Phys. Lett. A 384 126424 [27] Schuray A, Weithofer L and Recher P 2017 Phys. Rev. B 96 085417 [28] Gorski G, Baranski J, Weymann I and Domanski T 2018 Sci. Rep. 8 15717 [29] Cheng M, Becker M, Bauer B and Lutchyn R M 2014 Phys. Rev. X 4 031051 [30] Yang F, Cheng Y, Liu F and Chen X 2013 Appl. Phys. Lett. 102 011911 [31] Yang F, Cheng Y, Liu F and Chen X 2013 Appl. Phys. Lett. 103 033513 [32] Goldhaber-Gordon D, Shtrikman H, Mahalu D, AbuschMagder D, Meirav U and Kastner M A 1998 Nature 391 156 [33] Eriksson E, Zazunov A, Sodano P and Egger R 2015 Phys. Rev. B 91 064501 [34] Gorski G, Baranski J, Weymann I and Domanski T 2018 Sci. Rep. 8 15717 [35] Alicea J 2012 Rep. Prog. Phys. 75 076501 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|