Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 077307    DOI: 10.1088/1674-1056/abf4f8
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure

Wei-Jiang Gong(公卫江)1,†, Yu-Hang Xue(薛宇航)1, Xiao-Qi Wang(王晓琦)2, Lian-Lian Zhang(张莲莲)1, and Guang-Yu Yi(易光宇)1
1 College of Sciences, Northeastern University, Shenyang 110819, China;
2 Basic department, Yingkou Institute of Technology, Yingkou 115014, China
Abstract  We theoretically study the transport properties in the T-shaped double-quantum-dot structure, by considering the dot in the main channel to be coupled to the Majorana bound state (MBS) at one end of the topological superconducting nanowire. It is found that the side-coupled dot governs the effect of the MBS on the transport behavior. When its level is consistent with the energy zero point, the MBS contributes little to the conductance spectrum. Otherwise, the linear conductance exhibits notable changes according to the inter-MBS coupling manners. In the absence of inter-MBS coupling, the linear conductance value keeps equal to e2/2h when the level of the side-coupled dot departs from the energy zero point. However, the linear conductance is always analogous to the MBS-absent case once the inter-MBS coupling comes into play. These findings provide new information about the leakage effect of MBSs in quantum-dot structures.
Keywords:  Majorana bound states      quantum dots      conductance      antiresonance  
Received:  17 February 2021      Revised:  29 March 2021      Accepted manuscript online:  06 April 2021
PACS:  73.23.Hk (Coulomb blockade; single-electron tunneling)  
  73.50.Lw (Thermoelectric effects)  
  85.80.Fi (Thermoelectric devices)  
Fund: Project supported by the LiaoNing Revitalization Talents Program (Grant No. XLYC1907033), the Fundamental Research Funds for the Central Universities, China (Grant No. N2002005), and the National Natural Science Foundation of China (Grant No. 11905027).
Corresponding Authors:  Wei-Jiang Gong     E-mail:  gwj@mail.neu.edu.cn

Cite this article: 

Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇) Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure 2021 Chin. Phys. B 30 077307

[1] Reimann S M and Manninen M 2002 Rev. Mod. Phys. 74 1283
[2] van der Wiel W G, De Franceschi S, Elzerman J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2002 Rev. Mod. Phys. 75 1
[3] Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217
[4] Benson O, Santori C, Pelton M and Yamamoto Y 2000 Phys. Rev. Lett. 84 2513
[5] Aono T and Eto M 2001 Phys. Rev. B 63 125327
[6] Meir Y, Wingreen N S and Lee P A 1993 Phys. Rev. Lett. 70 2601
[7] Zheng Y, Lü T, Zhang C and Su W 2004 Physica E 24 290
[8] Gong W, Zheng Y, Liu Y and Lü T 2006 Phys. Rev. B 73 245329
[9] Sato M, Aikawa H, Kobayashi K, Katsumoto S and Iye Y 2005 Phys. Rev. Lett. 95 066801
[10] Žitko R and Bonča J 2007 Phys. Rev. B 76 241305
[11] Miroshnichenko A E, Flach S and Kivshar Y S 2010 Rev. Mod. Phys. 82 2257
[12] Lee W R, Kim J U and Sim H S 2008 Phys. Rev. B 77 033305
[13] Ding G H, Kim C K and Nahm K 2005 Phys. Rev. B 71 205313
[14] Akera H 1993 Phys. Rev. B 47 6835
[15] Brandes T and Kramer B 1999 Phys. Rev. Lett. 83 3021
[16] Ladrón de Guevara M L and Orellana P A 2006 Phys. Rev. B 73 205303
[17] Wierzbicki M and Swirkowicz R 2011 Phys. Rev. B 84 075410
[18] Wójcik K P and Weymann I 2014 Phys. Rev. B 90 115308
[19] Wójcik K P and Weymann I 2015 Phys. Rev. B 91 134422
[20] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003
[21] Das A, Ronen Y, Most Y, Oreg Y, Heiblum M and Shtrikman H 2012 Nat. Phys. 8 887
[22] Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C, Qian D, Zhou Y, Fu L, Li S C, Zhang F C and Jia J F 2016 Phys. Rev. Lett. 116 257003
[23] Wang D, Kong L, Fan P, Chen H, Zhu S, Liu W, Cao L, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Ding H and Gao H J 2018 Science 362 333
[24] Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083
[25] Wilczek F 2009 Nat. Phys. 5 614
[26] Stern A 2010 Nature 464 187
[27] Kong L Y and Ding H 2020 Acta Phys. Sin. 69 110301 (in Chinese)
[28] Kong L, Cao L, Zhu S, Papaj M, Dai G, Li G, Fan P, Liu W, Yang F, Wang X, Du S, Jin C, Fu L, Gao H J and Ding H arXiv: 2010.04735
[29] Kitaev A Y 2001 Phys. Usp. 44 131
[30] Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001
[31] Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002
[32] Sau J D, Lutchyn R M, Tewari S and Das Sarma S 2010 Phys. Rev. Lett. 104 040502
[33] Sau J D, Tewari S and Das Sarma S 2012 Phys. Rev. B 85 064512
[34] Alicea J 2010 Phys. Rev. B 81 125318
[35] Sato M, Takahashi Y and Fujimoto S 2009 Phys. Rev. Lett. 103 020401
[36] Sato M, Takahashi Y and Fujimoto S 2010 Phys. Rev. B 82 134521
[37] Nilsson J, Akhmerov A R and Beenakker C W J 2008 Phys. Rev. Lett. 101 120403
[38] Liu J, Zhang F C and Law K T 2013 Phys. Rev. B 88 064509
[39] Flensberg K 2010 Phys. Rev. B 82 180516
[40] Gong W J, Wu B H, Zhang S F and Zheng Y S 2014 Europhys. Lett. 106 30003
[41] Zitko R 2011 Phys. Rev. B 83 195137
[42] Liu D E and Baranger H U 2011 Phys. Rev. B 84 201308
[43] Gong W J, Zhang S F, Li Z C, Yi G Y and Zheng Y S 2014 Phys. Rev. B 89 245413
[44] Gong W J, Zhao Y and Gao Z 2015 Curr. Appl. Phys. 15 520
[45] Liu J, Wang J and Zhang F C 2014 Phys. Rev. B 90 035307
[46] Zocher B and Rosenow B 2013 Phys. Rev. Lett. 111 036802
[47] Liu J, Li K M, Chi F, Fu Z G, Hou Y F, Wang Z and Zhang P 2020 Chin. Phys. B 29 077302
[48] Gao Z and Gong W J 2016 Phys. Rev. B 94 104506
[49] Cheng M, Becker M, Bauer B and Lutchyn R M 2014 Phys. Rev. X 4 031051
[50] Weymann I, Wójcik K P and Majek P 2020 Phys. Rev. B 101 235404
[51] Wang X Q, Zhang S F, Han Y and Gong W J 2019 Phys. Rev. B 100 115405
[52] Ramos-Andrade J P, Peña F J, González A, Ávalos-Ovando O and Orellana P A 2017 Phys. Rev. B 96 165413
[53] Deng M T, Vaitiekenas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygåd J, Krogstrup P and Marcus C M 2016 Science 354 1557
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[5] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[8] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[9] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[12] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[13] Solid-gas interface thermal conductance for the thermal barrier coating with surface roughness: The confinement effect
Xue Zhao(赵雪) and Jin-Wu Jiang(江进武). Chin. Phys. B, 2022, 31(12): 126802.
[14] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
[15] Exciton emission dynamics in single InAs/GaAs quantum dots due to the existence of plasmon-field-induced metastable states in the wetting layer
Junhui Huang(黄君辉), Hao Chen(陈昊), Zhiyao Zhuo(卓志瑶), Jian Wang(王健), Shulun Li(李叔伦), Kun Ding(丁琨), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Desheng Jiang(江德生), Xiuming Dou(窦秀明), and Baoquan Sun(孙宝权). Chin. Phys. B, 2021, 30(9): 097805.
No Suggested Reading articles found!