Abstract We theoretically study the transport properties in the T-shaped double-quantum-dot structure, by considering the dot in the main channel to be coupled to the Majorana bound state (MBS) at one end of the topological superconducting nanowire. It is found that the side-coupled dot governs the effect of the MBS on the transport behavior. When its level is consistent with the energy zero point, the MBS contributes little to the conductance spectrum. Otherwise, the linear conductance exhibits notable changes according to the inter-MBS coupling manners. In the absence of inter-MBS coupling, the linear conductance value keeps equal to e2/2h when the level of the side-coupled dot departs from the energy zero point. However, the linear conductance is always analogous to the MBS-absent case once the inter-MBS coupling comes into play. These findings provide new information about the leakage effect of MBSs in quantum-dot structures.
Fund: Project supported by the LiaoNing Revitalization Talents Program (Grant No. XLYC1907033), the Fundamental Research Funds for the Central Universities, China (Grant No. N2002005), and the National Natural Science Foundation of China (Grant No. 11905027).
Corresponding Authors:
Wei-Jiang Gong
E-mail: gwj@mail.neu.edu.cn
Cite this article:
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇) Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure 2021 Chin. Phys. B 30 077307
[1] Reimann S M and Manninen M 2002 Rev. Mod. Phys.74 1283 [2] van der Wiel W G, De Franceschi S, Elzerman J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2002 Rev. Mod. Phys.75 1 [3] Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen L M K 2007 Rev. Mod. Phys.79 1217 [4] Benson O, Santori C, Pelton M and Yamamoto Y 2000 Phys. Rev. Lett.84 2513 [5] Aono T and Eto M 2001 Phys. Rev. B63 125327 [6] Meir Y, Wingreen N S and Lee P A 1993 Phys. Rev. Lett.70 2601 [7] Zheng Y, Lü T, Zhang C and Su W 2004 Physica E24 290 [8] Gong W, Zheng Y, Liu Y and Lü T 2006 Phys. Rev. B73 245329 [9] Sato M, Aikawa H, Kobayashi K, Katsumoto S and Iye Y 2005 Phys. Rev. Lett.95 066801 [10] Žitko R and Bonča J 2007 Phys. Rev. B76 241305 [11] Miroshnichenko A E, Flach S and Kivshar Y S 2010 Rev. Mod. Phys.82 2257 [12] Lee W R, Kim J U and Sim H S 2008 Phys. Rev. B77 033305 [13] Ding G H, Kim C K and Nahm K 2005 Phys. Rev. B71 205313 [14] Akera H 1993 Phys. Rev. B47 6835 [15] Brandes T and Kramer B 1999 Phys. Rev. Lett.83 3021 [16] Ladrón de Guevara M L and Orellana P A 2006 Phys. Rev. B73 205303 [17] Wierzbicki M and Swirkowicz R 2011 Phys. Rev. B84 075410 [18] Wójcik K P and Weymann I 2014 Phys. Rev. B90 115308 [19] Wójcik K P and Weymann I 2015 Phys. Rev. B91 134422 [20] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science336 1003 [21] Das A, Ronen Y, Most Y, Oreg Y, Heiblum M and Shtrikman H 2012 Nat. Phys.8 887 [22] Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C, Qian D, Zhou Y, Fu L, Li S C, Zhang F C and Jia J F 2016 Phys. Rev. Lett.116 257003 [23] Wang D, Kong L, Fan P, Chen H, Zhu S, Liu W, Cao L, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Ding H and Gao H J 2018 Science362 333 [24] Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys.80 1083 [25] Wilczek F 2009 Nat. Phys.5 614 [26] Stern A 2010 Nature464 187 [27] Kong L Y and Ding H 2020 Acta Phys. Sin.69 110301 (in Chinese) [28] Kong L, Cao L, Zhu S, Papaj M, Dai G, Li G, Fan P, Liu W, Yang F, Wang X, Du S, Jin C, Fu L, Gao H J and Ding H arXiv: 2010.04735 [29] Kitaev A Y 2001 Phys. Usp.44 131 [30] Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett.105 077001 [31] Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett.105 177002 [32] Sau J D, Lutchyn R M, Tewari S and Das Sarma S 2010 Phys. Rev. Lett.104 040502 [33] Sau J D, Tewari S and Das Sarma S 2012 Phys. Rev. B85 064512 [34] Alicea J 2010 Phys. Rev. B81 125318 [35] Sato M, Takahashi Y and Fujimoto S 2009 Phys. Rev. Lett.103 020401 [36] Sato M, Takahashi Y and Fujimoto S 2010 Phys. Rev. B82 134521 [37] Nilsson J, Akhmerov A R and Beenakker C W J 2008 Phys. Rev. Lett.101 120403 [38] Liu J, Zhang F C and Law K T 2013 Phys. Rev. B88 064509 [39] Flensberg K 2010 Phys. Rev. B82 180516 [40] Gong W J, Wu B H, Zhang S F and Zheng Y S 2014 Europhys. Lett.106 30003 [41] Zitko R 2011 Phys. Rev. B83 195137 [42] Liu D E and Baranger H U 2011 Phys. Rev. B84 201308 [43] Gong W J, Zhang S F, Li Z C, Yi G Y and Zheng Y S 2014 Phys. Rev. B89 245413 [44] Gong W J, Zhao Y and Gao Z 2015 Curr. Appl. Phys.15 520 [45] Liu J, Wang J and Zhang F C 2014 Phys. Rev. B90 035307 [46] Zocher B and Rosenow B 2013 Phys. Rev. Lett.111 036802 [47] Liu J, Li K M, Chi F, Fu Z G, Hou Y F, Wang Z and Zhang P 2020 Chin. Phys. B29 077302 [48] Gao Z and Gong W J 2016 Phys. Rev. B94 104506 [49] Cheng M, Becker M, Bauer B and Lutchyn R M 2014 Phys. Rev. X4 031051 [50] Weymann I, Wójcik K P and Majek P 2020 Phys. Rev. B101 235404 [51] Wang X Q, Zhang S F, Han Y and Gong W J 2019 Phys. Rev. B100 115405 [52] Ramos-Andrade J P, Peña F J, González A, Ávalos-Ovando O and Orellana P A 2017 Phys. Rev. B96 165413 [53] Deng M T, Vaitiekenas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygåd J, Krogstrup P and Marcus C M 2016 Science354 1557
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.