CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure |
Wei-Jiang Gong(公卫江)1,†, Yu-Hang Xue(薛宇航)1, Xiao-Qi Wang(王晓琦)2, Lian-Lian Zhang(张莲莲)1, and Guang-Yu Yi(易光宇)1 |
1 College of Sciences, Northeastern University, Shenyang 110819, China; 2 Basic department, Yingkou Institute of Technology, Yingkou 115014, China |
|
|
Abstract We theoretically study the transport properties in the T-shaped double-quantum-dot structure, by considering the dot in the main channel to be coupled to the Majorana bound state (MBS) at one end of the topological superconducting nanowire. It is found that the side-coupled dot governs the effect of the MBS on the transport behavior. When its level is consistent with the energy zero point, the MBS contributes little to the conductance spectrum. Otherwise, the linear conductance exhibits notable changes according to the inter-MBS coupling manners. In the absence of inter-MBS coupling, the linear conductance value keeps equal to e2/2h when the level of the side-coupled dot departs from the energy zero point. However, the linear conductance is always analogous to the MBS-absent case once the inter-MBS coupling comes into play. These findings provide new information about the leakage effect of MBSs in quantum-dot structures.
|
Received: 17 February 2021
Revised: 29 March 2021
Accepted manuscript online: 06 April 2021
|
PACS:
|
73.23.Hk
|
(Coulomb blockade; single-electron tunneling)
|
|
73.50.Lw
|
(Thermoelectric effects)
|
|
85.80.Fi
|
(Thermoelectric devices)
|
|
Fund: Project supported by the LiaoNing Revitalization Talents Program (Grant No. XLYC1907033), the Fundamental Research Funds for the Central Universities, China (Grant No. N2002005), and the National Natural Science Foundation of China (Grant No. 11905027). |
Corresponding Authors:
Wei-Jiang Gong
E-mail: gwj@mail.neu.edu.cn
|
Cite this article:
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇) Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure 2021 Chin. Phys. B 30 077307
|
[1] Reimann S M and Manninen M 2002 Rev. Mod. Phys. 74 1283 [2] van der Wiel W G, De Franceschi S, Elzerman J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2002 Rev. Mod. Phys. 75 1 [3] Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217 [4] Benson O, Santori C, Pelton M and Yamamoto Y 2000 Phys. Rev. Lett. 84 2513 [5] Aono T and Eto M 2001 Phys. Rev. B 63 125327 [6] Meir Y, Wingreen N S and Lee P A 1993 Phys. Rev. Lett. 70 2601 [7] Zheng Y, Lü T, Zhang C and Su W 2004 Physica E 24 290 [8] Gong W, Zheng Y, Liu Y and Lü T 2006 Phys. Rev. B 73 245329 [9] Sato M, Aikawa H, Kobayashi K, Katsumoto S and Iye Y 2005 Phys. Rev. Lett. 95 066801 [10] Žitko R and Bonča J 2007 Phys. Rev. B 76 241305 [11] Miroshnichenko A E, Flach S and Kivshar Y S 2010 Rev. Mod. Phys. 82 2257 [12] Lee W R, Kim J U and Sim H S 2008 Phys. Rev. B 77 033305 [13] Ding G H, Kim C K and Nahm K 2005 Phys. Rev. B 71 205313 [14] Akera H 1993 Phys. Rev. B 47 6835 [15] Brandes T and Kramer B 1999 Phys. Rev. Lett. 83 3021 [16] Ladrón de Guevara M L and Orellana P A 2006 Phys. Rev. B 73 205303 [17] Wierzbicki M and Swirkowicz R 2011 Phys. Rev. B 84 075410 [18] Wójcik K P and Weymann I 2014 Phys. Rev. B 90 115308 [19] Wójcik K P and Weymann I 2015 Phys. Rev. B 91 134422 [20] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003 [21] Das A, Ronen Y, Most Y, Oreg Y, Heiblum M and Shtrikman H 2012 Nat. Phys. 8 887 [22] Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C, Qian D, Zhou Y, Fu L, Li S C, Zhang F C and Jia J F 2016 Phys. Rev. Lett. 116 257003 [23] Wang D, Kong L, Fan P, Chen H, Zhu S, Liu W, Cao L, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Ding H and Gao H J 2018 Science 362 333 [24] Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083 [25] Wilczek F 2009 Nat. Phys. 5 614 [26] Stern A 2010 Nature 464 187 [27] Kong L Y and Ding H 2020 Acta Phys. Sin. 69 110301 (in Chinese) [28] Kong L, Cao L, Zhu S, Papaj M, Dai G, Li G, Fan P, Liu W, Yang F, Wang X, Du S, Jin C, Fu L, Gao H J and Ding H arXiv: 2010.04735 [29] Kitaev A Y 2001 Phys. Usp. 44 131 [30] Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001 [31] Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002 [32] Sau J D, Lutchyn R M, Tewari S and Das Sarma S 2010 Phys. Rev. Lett. 104 040502 [33] Sau J D, Tewari S and Das Sarma S 2012 Phys. Rev. B 85 064512 [34] Alicea J 2010 Phys. Rev. B 81 125318 [35] Sato M, Takahashi Y and Fujimoto S 2009 Phys. Rev. Lett. 103 020401 [36] Sato M, Takahashi Y and Fujimoto S 2010 Phys. Rev. B 82 134521 [37] Nilsson J, Akhmerov A R and Beenakker C W J 2008 Phys. Rev. Lett. 101 120403 [38] Liu J, Zhang F C and Law K T 2013 Phys. Rev. B 88 064509 [39] Flensberg K 2010 Phys. Rev. B 82 180516 [40] Gong W J, Wu B H, Zhang S F and Zheng Y S 2014 Europhys. Lett. 106 30003 [41] Zitko R 2011 Phys. Rev. B 83 195137 [42] Liu D E and Baranger H U 2011 Phys. Rev. B 84 201308 [43] Gong W J, Zhang S F, Li Z C, Yi G Y and Zheng Y S 2014 Phys. Rev. B 89 245413 [44] Gong W J, Zhao Y and Gao Z 2015 Curr. Appl. Phys. 15 520 [45] Liu J, Wang J and Zhang F C 2014 Phys. Rev. B 90 035307 [46] Zocher B and Rosenow B 2013 Phys. Rev. Lett. 111 036802 [47] Liu J, Li K M, Chi F, Fu Z G, Hou Y F, Wang Z and Zhang P 2020 Chin. Phys. B 29 077302 [48] Gao Z and Gong W J 2016 Phys. Rev. B 94 104506 [49] Cheng M, Becker M, Bauer B and Lutchyn R M 2014 Phys. Rev. X 4 031051 [50] Weymann I, Wójcik K P and Majek P 2020 Phys. Rev. B 101 235404 [51] Wang X Q, Zhang S F, Han Y and Gong W J 2019 Phys. Rev. B 100 115405 [52] Ramos-Andrade J P, Peña F J, González A, Ávalos-Ovando O and Orellana P A 2017 Phys. Rev. B 96 165413 [53] Deng M T, Vaitiekenas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygåd J, Krogstrup P and Marcus C M 2016 Science 354 1557 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|