Abstract We report on the electron-mediated ferromagnetism in Fe-doped InP from both first-principles calculations and experiments. Theoretically, based on spin-polarized density functional theory within Heyd-Scuseria-Ernzerhof (HSE03) approach, we systematically investigate the magnetic properties of Fe-doped InP and predict the existence of electron-mediated ferromagnetism. Experimentally, by diffusing Fe into the n-type InP wafer with thermal annealing at 800 ℃, we observe room-temperature ferromagnetism in InP:Fe, which is in agreement with the theoretical prediction.
Dong Shan (董珊), Zhu Feng (朱峰) Electron-mediated ferromagnetism in Fe-doped InP: Theory and experiment 2012 Chin. Phys. B 21 097502
[1]
Ohno H 1998 Science 281 951
[2]
Awschalom D D and Kawakami R K 2000 Nature 408 923
[3]
Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[4]
Linnarsson M, Janzn E, Monemar B, Kleverman M and Thilderkvist A 1997 Phys. Rev. B 55 6938
[5]
Fukumura T, Jin Z, Ohtomo A, Koinuma H and Kawasaki M 1999 Appl. Phys. Lett. 75 3366
[6]
Jin Z, Fukumura T, Kawasaki M, Ando K, Saito H, Sekiguchi T, Yoo Y Z, Murakami M, Matsumoto Y, Hasegawa T, and Koinuma H 2001 Appl. Phys. Lett. 78 3824
[7]
Peng H, Li J, Li S S and Xia J B 2009 Phys. Rev. B 79 092411
[8]
Deng H X, Li J, Li S S, Xia J B, Walsh A and Wei S H 2010 Appl. Phys. Lett. 96 162508
[9]
Wei S H, Gong X G, Dalpian G M and Wei S H 2005 Phys. Rev. B 71 144409
[10]
Dalpian G M, Wei S H, Gong X G, da Silva A J R and Fazzio A 2006 Solid State Commun. 138 353
[11]
Peng H, Xiang H J, Wei S H, Li S S, Xia J B and Li J 2009 Phys. Rev. Lett. 102 017201
[12]
Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019
[13]
Sanvito S, Ordejon P and Hill N A 2001 Phys. Rev. B 63 165206
[14]
Coey J M D, Venkatesan M and Fitzgerald C B 2005 Nat. Mater. 4 173
[15]
Meng X Q, Tang L M and Li J 2010 J. Phys. Chem. C 114 17596
[16]
Walsh A, Da Silva J L F and Wei S H 2008 Phys. Rev. Lett. 100 256401
[17]
Wieder H H 1985 J. Vac. Sci. Technol. 15 1498
[18]
Petrov M P, Bryksin V V, Hilling B, Lemmer M and Imlau M 2008 Phys. Rev. B 78 085121
[19]
Zhu H J, Kostial H, Wassermeier M, Schonherr H P and Ploog K H 2001 Phys. Rev. Lett. 87 016601
[20]
Feng Q J, Shen D Z, Zhang J Y, Li B H, Zhang Z Z, Lu Y M and Fan X W 2008 Mater. Chem. Phys. 112 1106
[21]
Twardowski A, Swagten H J M and Jonge W J M 1991 Phys. Rev. B 44 2220
[22]
Hohenberg P and Kohn W 1994 Phys. Rev. B 136 864
[23]
Perdew J P and Wang Y 1986 Phys. Rev. B 33 8800
[24]
Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[25]
Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[26]
Heyd J and Scuseria G E 2004 J. Chem. Phys. 120 7274
[27]
Heyd J, Peralta J E, Scuseria G E and Martin R L 2005 J. Chem. Phys. 123 174101
[28]
Paier J, Marsman M, Hummer K, Kresse G, Gerber I C and Angyan J G 2006 J Chem. Phys. 124 154709
[29]
Kresse G and Hafner J 1993 Phys. Rev. B 48 13115
[30]
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[31]
Madelung O 2004 Semiconductors: Data Handbook (Berlin: Springer)
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.