Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 034202    DOI: 10.1088/1674-1056/21/3/034202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Fano resonance and wave transmission through a chain structure with an isolated ring composed of defects

Zhang Cun-Xi(张存喜)a), Ding Xiu-Huan(丁秀欢)b)c)†, Wang Rui(王瑞)a) Zhou Yun-Qing(周运清)a), and Kong Ling-Min(孔令民)a)
a. Department of Physics, Zhejiang Ocean University, Zhoushan 316000, China;
b. Department of Mathematics, Zhejiang Ocean University, Zhoushan 316000, China;
c. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
Abstract  We consider a discrete model that describes a linear chain of particles coupled to an isolated ring composed of N defects. This simple system can be regarded as a generalization of the familiar Fano-Anderson model. It can be used to model discrete networks of coupled defect modes in photonic crystals and simple waveguide arrays in two-dimensional lattices. The analytical result of the transmission coefficient is obtained, along with the conditions for perfect reflections and transmissions due to either destructive or constructive interferences. Using a simple example, we further investigate the relationship between the resonant frequencies and the number of defects N, and study how to affect the numbers of perfect reflections and transmissions. In addition, we demonstrate how these resonance transmissions and refections can be tuned by one nonlinear defect of the network that possesses a nonlinear Kerr-like response.
Keywords:  wave transmission      Fano resonance      defect      bistability  
Received:  09 October 2011      Revised:  17 October 2011      Accepted manuscript online: 
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.65.Pc (Optical bistability, multistability, and switching, including local field effects)  
  42.65.Hw (Phase conjugation; photorefractive and Kerr effects)  
  41.85.Ja (Particle beam transport)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11147173 and 61106052)he Zhejiang Education Department, China (Grant No. Y201018926 and Y200908466), the Basic Research Foundation of Jilin University, China (Grant No. 93K172011K02), the Basic Research Foundation of Zhejiang Ocean University, the Nature Science Foundation of Zhejiang Province, China (Grant No. 1047172)nd the Open Foundation from Ocean Fishery Science and Technology in the Most Important Subjects of Zhejiang, China (No. 20110105).
Corresponding Authors:  Ding Xiu-Huan,dingxh@zjou.edu.cn     E-mail:  dingxh@zjou.edu.cn

Cite this article: 

Zhang Cun-Xi(张存喜), Ding Xiu-Huan(丁秀欢), Wang Rui(王瑞) Zhou Yun-Qing(周运清), and Kong Ling-Min(孔令民) Fano resonance and wave transmission through a chain structure with an isolated ring composed of defects 2012 Chin. Phys. B 21 034202

[1] Fano U 1961 emphPhys. Rev. 124 1866
[2] Fano U and Cooper J W 1965 emphPhys. Rev. A % 137 1364
[3] Simpson J A and Fano U 1963 emphPhys. Rev. Lett. 11 158
[4] Cerdeira F, Fjeldly T A and Cardona M 1973 emphPhys. Rev. B 8 4734
[5] Feist J, Capasso F, Sirtori C, West K W and Pfeiffer L N 1997 emphNature 390 589
[6] Schmidt H, Campman K L, Gossard A C and Imamoglu A 1997 emphAppl. Phys. Lett. 70 3455
[7] Kobayashi K, Aikawa H, Katsumoto S and Iye Y 2003 emph% Phys. Rev. B 68 235304
[8] Su X M, Zhuo Z C, Wang L J and Gao J Y 2002 emphChin. Phys. % 11 1175
[9] Wang J M, Wang R, Zhang Y P and Liang J Q 2007 emphChin. Phys. 16 2069
[10] Chen M L and Wang S J 2007 emphChin. Phys. 16 2101
[11] Nöckel J U and Stone A D 1994 emphPhys. Rev. B 50 17415
[12] Kobayashi K, Aikawa H, Katsumoto S and Iye Y 2002 emph% Phys. Rev. Lett. 88 256806
[13] Göres J, Goldhaber-Gordon D, Heemeyer S, Kastner M A, Shtrikman H, Mahalu D and Meirav U 2000 emphPhys. Rev. B 62 2188
[14] Bulka B R and Stefanski P 2001 emphPhys. Rev. Lett. 86 5128
[15] Torio M E, Hallberg K, Flach S, Miroshnichenko A E and Titov M 2004 emphEur. Phys. J. B 37 399
[16] Aligia A A and Salguero L A 2004 emphPhys. Rev. B 70 075307
[17] Ladr髇 de Guevara M L, Claro F and Orellana P A 2003 emphPhys. Rev. B 67 195335
[18] Lu H Z, L? R and Zhu B F 2005 emphPhys. Rev. B 71 235320
[19] Chi F, Liu J L and Sun L L 2007 emphJ. Appl. Phys. 101 093704
[20] Fan S and Joannopoulos J D 2002 emphPhys. Rev. B 65 235112
[21] Fan S H 2002 emphAppl. Phys. Lett. 80 908
[22] Yanik M F, Fan S H and Soljacic M 2003 emphAppl. Phys. Lett. 83 2739
[23] Cowan A R and Young J F 2003 emphPhys. Rev. E 68 046606
[24] Fan S H, Suh W and Joannopoulos J D 2003 emphJ. Opt. Soc. Am. B 20 569
[25] Lousse V and Vigneron J P 2004 emphPhys. Rev. B % 69 155106
[26] Mingaleev S F, Miroshnichenko A E, Kivshar Y S and Busch K 2006 emphPhys. Rev. E 74 046603
[27] Mingaleev S F, Miroshnichenko A E and Kivshar Y S 2008 emphOpt. Express 16 11647
[28] Miroshnichenko A E, Flach S and Kivshar Y S 2010 emphRev. Mod. Phys. 82 2257
[29] Miroshnichenko A E, Mingaleev S F, Flach S and Kivshar Y S 2005 emphPhys. Rev. E 71 036626
[30] Miroshnichenko A E and Kivshar Y S 2005 emph% Phys. Rev. E 72 056611
[31] Mahan G D 1993 emphMany-Particle Physics (New York: Plenum Press)
[32] Gibbs H M 1985 emphOptical Bistability: emphControlling Light with Light (New York: Academic Press)
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[4] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[5] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[6] Direct visualization of structural defects in 2D semiconductors
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
[7] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
[8] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
[9] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[10] High-sensitivity Bloch surface wave sensor with Fano resonance in grating-coupled multilayer structures
Daohan Ge(葛道晗), Yujie Zhou(周宇杰), Mengcheng Lv(吕梦成), Jiakang Shi(石家康), Abubakar A. Babangida, Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(4): 044102.
[11] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[12] Transition state and formation process of Stone—Wales defects in graphene
Jian-Hui Bai(白建会), Yin Yao(姚茵), and Ying-Zhao Jiang(姜英昭). Chin. Phys. B, 2022, 31(3): 036102.
[13] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[14] Effect of heavy ion irradiation on the interface traps of AlGaN/GaN high electron mobility transistors
Zheng-Zhao Lin(林正兆), Ling Lü(吕玲), Xue-Feng Zheng(郑雪峰), Yan-Rong Cao(曹艳荣), Pei-Pei Hu(胡培培), Xin Fang(房鑫), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2022, 31(3): 036103.
[15] Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film
Xiangxian Wang(王向贤), Jian Zhang(张健), Jiankai Zhu(朱剑凯), Zao Yi(易早), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(2): 024210.
No Suggested Reading articles found!