Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 035204    DOI: 10.1088/1674-1056/ac306d
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system

Rangyue Zhang(张壤月)1, Guannan Shi(史冠男)2, Hanyu Tang(唐瀚宇)1, Yang Liu(刘阳)1, Yanhong Liu(刘艳红)3, and Feng Huang(黄峰)1,†
1 College of Science, China Agricultural University, Beijing 100083, China;
2 College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China;
3 School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
Abstract  The effect of the number of defect particles on the structure and dispersion relations of a two-dimensional (2D) dust lattice is studied by molecular dynamics (MD) simulation. The dust lattice structures are characterized by particle distribution, nearest neighbor configuration and pair correlation function. The current autocorrelation function, the dispersion relation and sound speed are used to represent the wave properties. The wave propagation of the dust lattice closely relates to the lattice structure. It shows that the number of defect particles can affect the dust lattice local structure and then affect the dispersion relations of waves propagating in it. The presence of defect particles has a greater effect on the transverse waves than on the longitudinal waves of the dust lattice. The appropriate number of defect particles can weaken the anisotropy property of the lattice.
Keywords:  complex plasma      molecular dynamics (MD) simulation      defect particles      dust lattice wave  
Received:  01 June 2021      Revised:  13 October 2021      Accepted manuscript online:  18 October 2021
PACS:  52.27.Lw (Dusty or complex plasmas; plasma crystals)  
  52.65.Yy (Molecular dynamics methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12075315 and 11675261).
Corresponding Authors:  Feng Huang     E-mail:  huangfeng@cau.edu.cn

Cite this article: 

Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰) Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system 2022 Chin. Phys. B 31 035204

[1] Bonitz M, Filinov V S, Fortov V E, Levashov P R and Fehske H 2005 Phys. Rev. Lett. 95 235006
[2] Yang X F, Wang X G and Liu Y 2009 Chin. Phys. B 18 4938
[3] Farokhi B 2013 J. Plasma. Phys. 79 629
[4] Shahmansouri M and Farokhi B 2012 J. Plasma. Phys. 78 259
[5] Caplan M E 2020 Phys. Rev. E 101 023201
[6] Schella A, Mulsow M, Melzer A, Hählert H, Block D, Ludwig P and Bonitz M 2013 New. J. Phys. 15 113021
[7] Melzer A, Homann A and Piel A 1996 Phys. Rev. E 53 2757
[8] Thomas H M and Morfill G E 1996 Nature 379 806
[9] Melzer A, Schweigert V A, Schweigert I V, Homann A, Peters S and Piel A 1996 Phys. Rev. E 54 R46
[10] Sun X X, Wang C H and Wang X G 2007 Chin. Phys. Lett. 24 771
[11] Couëdel L, Zhdanov S K, Ivlev A V, Nosenko V, Thomas H M and Morfill G E 2011 Phys. Plasmas 18 083707
[12] Pieper J B and Goree J 1996 Phys. Rev. Lett. 77 3137
[13] Peters S, Homann A, Melzer A and Piel A 1996 Phys. Lett. A 223 389
[14] Thompson C, Barkan A, Angelo N D' and Merlino R L 1997 Phys. Plasmas 4 2331
[15] Li F and Havnes O 2001 Phys. Rev. E 64 066407
[16] Goree J 1994 Plasma. Sources. Sci. T 3 400
[17] Draine B T and Salpeter E E 1979 Astrophys. J. 231 77
[18] Havnes O, Morfill G E and Goertz C K 1984 J. Geophys. Res. 89 10999
[19] Slattery W L, Doolen G D and DeWitt H E 1980 Phys. Rev. A 21 2087
[20] Ichimaru S 1982 Rev. Mod. Phys. 54 1017
[21] Röcker T, Ivlev A, Zhdanov S and Morfill G 2014 Phys. Rev. E 89 13104
[22] Huang X M, Wang C H and Sun X X 2015 Journal of Hefei University of Technology (Natural Science) 38 569
[23] Morfill G E, Thomas H M, Konopka U M, Rothermel H M, Zuzic M M, Ivlev A M and Goree J M 1999 Phys. Rev. Lett. 83 1598
[24] Quinn T M, Crowley T J and Taylor F 1996 Geophys. Res. Lett. 23 3413
[25] Schmidt P, Zwicknagel G, Reinhard P G and Toepffer C 1997 Phys. Rev. E 56 7310
[26] Ohta H and Hamaguchi S 2000 Phys. Plasmas 7 4506
[27] Ohta H and Hamaguchi S 2000 Phys. Rev. Lett. 84 6026
[28] Liang Z X, Xi D, Zhang Z D and Wu B 2008 Phys. Rev. A 78 023622
[29] Wieben F and Block D 2019 Phys. Rev. Lett. 123 225001
[30] Farokhi B, Kourakis I and Shukla P K 2006 Phys. Lett. A 355 122
[31] Liu Y, Liu B, Chen Y, Yang S Z, Long W and Wang X 2003 Phys. Rev. E 67 066408
[1] Long-time evolution of charged grains in plasma under harmonic external force and after being withdrawn
Miao Guan(管苗), Zhi-Dong Chen(陈志东), Meng-Die Li(李梦蝶), Zhong-Mao Liu(刘忠茂), You-Mei Wang(汪友梅), and Ming-Yang Yu(郁明阳). Chin. Phys. B, 2022, 31(2): 025201.
[2] Nearly golden-ratio order in Ta metallic glass
Yuan-Qi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2020, 29(4): 046105.
[3] Effects of Mg2+ on the binding of the CREB/CRE complex: Full-atom molecular dynamics simulations
Song Mao(毛松), Shuai Wang(王帅), Haiyou Deng(邓海游), Ming Yi(易鸣). Chin. Phys. B, 2019, 28(7): 078701.
[4] Theoretical studies and molecular dynamics simulations on ion transport properties in nanochannels and nanopores
Ke Xiao(肖克), Dian-Jie Li(李典杰), Chen-Xu Wu(吴晨旭). Chin. Phys. B, 2018, 27(2): 024702.
[5] Electric field in two-dimensional complex plasma crystal: Simulated lattices
Behnam Bahadory. Chin. Phys. B, 2018, 27(2): 025202.
[6] Wetting and coalescence of the liquid metal on the metal substrate
Zhen-Yang Zhao(赵珍阳), Tao Li(李涛), Yun-Rui Duan(段云瑞), Zhi-Chao Wang(王志超), Hui Li(李辉). Chin. Phys. B, 2017, 26(8): 083104.
No Suggested Reading articles found!