Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 024210    DOI: 10.1088/1674-1056/ac3816

Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film

Xiangxian Wang(王向贤)1,†, Jian Zhang(张健)1, Jiankai Zhu(朱剑凯)1, Zao Yi(易早)2, and Jianli Yu(余建立)3
1 School of Science, Lanzhou University of Technology, Lanzhou 730050, China;
2 Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China;
3 School of Electronic Engineering, Chaohu University, Chaohu 238000, China
Abstract  We propose a hybrid structure of a nano-cube array coupled with multilayer full-dielectric thin films for refractive index sensing. In this structure, discrete states generated by two-dimensional grating and continuous states generated by a photonic crystal were coupled at a specific wavelength to form two Fano resonances. The transmission spectra and electric field distributions of the structure were obtained via the finite-difference time-domain method. We obtained the optimal structural parameters after optimizing the geometrical parameters. Under the optimal parameters, the figure of merit (FOM) values of the two Fano resonances reached 1.7×104 and 3.9×103, respectively. These results indicate that the proposed structure can achieve high FOM refractive index sensing, thus offering extensive application prospects in the biological and chemical fields.
Keywords:  Fano resonance      refractive index      nano-cube array      all-dielectric film  
Received:  14 September 2021      Revised:  03 November 2021      Accepted manuscript online:  10 November 2021
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.-p (Wave optics)  
  42.79.-e (Optical elements, devices, and systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61865008) and the Hong Liu FirstClass Disciplines Development Program of Lanzhou University of Technology.
Corresponding Authors:  Xiangxian Wang     E-mail:

Cite this article: 

Xiangxian Wang(王向贤), Jian Zhang(张健), Jiankai Zhu(朱剑凯), Zao Yi(易早), and Jianli Yu(余建立) Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film 2022 Chin. Phys. B 31 024210

[1] Gao H, Zhao X, Zhang H, Chen J, Wang S and Yang H 2020 J. Electron. Mater. 49 5248
[2] Guan S, Li R, Sun X, Xian T and Yang H 2020 Mater. Technol. 36 603
[3] Liu C, Wang J, Wang F, Su W, Yang L, Lv J, Fu G, Li X, Liu Q, Sun T and Chu P K 2020 Opt. Commun. 464 125496
[4] Liu C, Yang L, Liu Q, Wang F, Sun Z, Sun T, Mu H and Chu P K 2018 Plasmonics. 13 779
[5] Wang X, Wu Y, Wen X, Zhu J, Bai X, Qi Y and Yang H 2020 Opt. Quantum Electron. 52 238
[6] Wu Y, Wang X, Wen X, Zhu J, Bai X, Jia T, Yang H, Zhang L and Qi Y 2020 Phys. Lett. A 384 126544
[7] Chen Z, Chen H, Jile H, Xu D, Yi Z, Lei Y, Chen X, Zhou Z, Cai S and Li G 2021 Diamond Relat. Mater. 115 108374
[8] Liu Z, Tang P, Liu X, Yi Z, Liu G, Wang Y and Liu M 2019 Nanotechnology 30 305203
[9] Wang Y, Yi Y, Xu D, Yi Z, Li Z, Chen X, Jile H, Zhang J, Zeng L and Li G 2021 Physica E 131 114750
[10] Zhou F, Qin F, Yi Z, Yao W T and Wu P 2021 Phys. Chem. Chem. Phys. 23 17041
[11] Chen J, Nie H, Peng C, Qi S, Tang C, Zhang Y, Wang L and Park G S 2018 J. Lightwave Technol. 36 3481
[12] Zhao X, Zhang Z and Yan S 2017 Sensors 17 1494
[13] Wang X, Zhu J, Tong H, Yang X, Wu X, Pang Z, Yang H and Qi Y 2019 Chin. Phys. B 28 044201
[14] Wang X, Zhu J, Xu Y, Qi Y, Zhang L, Yang H and Yi Z 2021 Chin. Phys. B 30 024207
[15] Qian J, Li J, Zhi J and Qin S 2013 Chin. J. Anal. Chem. 41 738
[16] Yan Z, Lu X, Du W, Lv Z, Tang C, Cai P, Gu P, Chen J and Yu Z 2021 Nanotechnology 32 465202
[17] Butt M A, Kazanskiy N L and Khonina S N 2020 Laser Phys. 30 076204
[18] Fano U 1961 Phys. Rev. 124 1866
[19] Zhu J and Wu C 2021 Results Phys. 21 103858
[20] Chen Y, Zhou X, Zhang M, Xiao C, Ding Z and Zhou J 2020 Phys. Lett. A 384 126877
[21] Cheng L, Wang Z, He X and Cao P 2019 Beilstein J. Nanotechnol. 10 2527
[22] He Z, Li C, Cui W, Xue W and Wang M 2020 Results Phys. 16 103140
[23] Wang S, Yu S, Zhao T, Wang Y and Shi X 2020 Opt. Commun. 465 125614
[24] Lotfiani A, Mohseni S M and Ghanaatshoar M 2020 Opt. Commun. 477 126323
[25] Qi Y, Wang L, Zhang Y, Zhang T, Zhang B, Deng X and Wang X 2020 Chin. Phys. B 29 067303
[26] Wang Y, Hou Z L and Yu L 2021 Opt. Commun. 480 126438
[27] Fang Y H, Wen K H, Qin Y W, Li Z F and Wu B Y 2019 Opt. Commun. 452 12
[28] Zhang X, Qi Y, Zhou P, Gong H, Hu B and Yan C 2018 Photonic Sens. 8 367
[29] Guo T, Evans J, Wang N, Jin Y and Sun Y 2021 Appl. Sci. 11 3312
[30] Yaremchuk I, Tamulevičius T, Fitio V, Gražulevičiūte I, Bobitski Y and Tamulevičius S 2013 Opt. Commun. 301-302 1
[31] Lan G, Zhang S, Zhang H, Zhu Y, Qing L, Li D, Nong J, Wang W, Chen L and Wei W 2019 Phys. Lett. A 383 1478
[32] Qian L, Wang K, Zhu W, Han C and Yan C 2019 Opt. Commun. 452 273
[33] Klimov, Vasily V, Treshin, Ilya V, Zabkov, Pavlov and Andrey A 2017 J. Phys. D Appl. Phys. 50 285101
[34] Becker J, Trüler A, Jakab A, Hohenester U and Nnichsen C 2010 Plasmonics. 5 161
[35] Na L, Mesch M, Weiss T, Hentschel M and Giessen H 2010 Nano Lett. 10 2342
[36] Su W, Chen X, Geng Z, Luo Y and Chen B 2020 Results Phys. 18 103340
[37] Dc A, Ra A, Rks A, Sheng H and Rpd A 2020 Optik 223 165545
[38] Mehaney A 2020 Scientific Reports 10 17979
[39] Sharma Y, Zafar R, Metya S K and Kanungo V 2020 IEEE Sens. J. 21 1
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[3] High-sensitivity Bloch surface wave sensor with Fano resonance in grating-coupled multilayer structures
Daohan Ge(葛道晗), Yujie Zhou(周宇杰), Mengcheng Lv(吕梦成), Jiakang Shi(石家康), Abubakar A. Babangida, Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(4): 044102.
[4] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[5] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
[6] High-sensitivity refractive index sensors based on Fano resonance in a metal-insulator-metal based arc-shaped resonator coupled with a rectangular stub
Shubin Yan(闫树斌), Hao Su(苏浩), Xiaoyu Zhang(张晓宇), Yi Zhang(张怡), Zhanbo Chen(陈展博), Xiushan Wu(吴秀山), and Ertian Hua(华尔天). Chin. Phys. B, 2022, 31(10): 108103.
[7] On the structural and optical properties investigation of annealed Zn nanorods in the oxygen flux
Fatemeh Abdi. Chin. Phys. B, 2021, 30(11): 117802.
[8] Novel high-quality Fano resonance based on metal-insulator-metal waveguide with L-shaped resonators
Changsong Wu(伍长松) and Jun Zhu(朱君). Chin. Phys. B, 2021, 30(10): 104210.
[9] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[10] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[11] Tunability of Fano resonance in cylindrical core-shell nanorods
Ben-Li Wang(王本立). Chin. Phys. B, 2020, 29(4): 045202.
[12] Refractive index of ionic liquids under electric field: Methyl propyl imidazole iodide and several derivatives
Ji Zhou(周吉), Shi-Kui Dong(董士奎), Zhi-Hong He(贺志宏), Yan-Hu Zhang(张彦虎). Chin. Phys. B, 2020, 29(4): 047801.
[13] Ultra wide sensing range plasmonic refractive index sensor based on nano-array with rhombus particles
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Xiaoxiong Wu(吴枭雄), Yingwen Su(苏盈文), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), and Hua Yang(杨华)$. Chin. Phys. B, 2020, 29(11): 114204.
[14] Enhanced reflection chiroptical effect of planar anisotropic chiral metamaterials placed on the interface of two media
Xiu Yang(杨秀), Tao Wei(魏涛), Feiliang Chen(陈飞良), Fuhua Gao(高福华), Jinglei Du(杜惊雷)†, and Yidong Hou(侯宜栋)‡. Chin. Phys. B, 2020, 29(10): 107303.
[15] Dynamical anisotropic magnetoelectric effects at ferroelectric/ferromagnetic insulator interfaces
Yaojin Li(李耀进), Vladimir Koval, Chenglong Jia(贾成龙). Chin. Phys. B, 2019, 28(9): 097501.
No Suggested Reading articles found!