Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 054214    DOI: 10.1088/1674-1056/ac5a3e
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition

Wei-Yuan Luo(罗韦媛)1, Wen-Feng Sun(孙文丰)1, Bo Li(黎波)1,†, Xia Xiang(向霞)1,‡, Xiao-Long Jiang(蒋晓龙)2, Wei Liao(廖威)2, Hai-Jun Wang(王海军)2, Xiao-Dong Yuan(袁晓东)2, Xiao-Dong Jiang(蒋晓东)2, and Xiao-Tao Zu(祖小涛)1
1 School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China;
2 Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  Oxygen ions (O+) were implanted into fused silica at a fixed fluence of 1×1017 ions/cm2 with different ion energies ranging from 10 keV to 60 keV. The surface roughness, optical properties, mechanical properties and laser damage performance of fused silica were investigated to understand the effect of oxygen ion implantation on laser damage resistance of fused silica. The ion implantation accompanied with sputtering effect can passivate the sub-/surface defects to reduce the surface roughness and improve the surface quality slightly. The implanted oxygen ions can combine with the structural defects (ODCs and E' centers) to reduce the defect densities and compensate the loss of oxygen in fused silica surface under laser irradiation. Furthermore, oxygen ion implantation can reduce the Si-O-Si bond angle and densify the surface structure, thus introducing compressive stress in the surface to strengthen the surface of fused silica. Therefore, the laser induced damage threshold of fused silica increases and the damage growth coefficient decreases when ion energy up to 30 keV. However, at higher ion energy, the sputtering effect is weakened and implantation becomes dominant, which leads to the surface roughness increase slightly. In addition, excessive energy aggravates the breaking of Si-O bonds. At the same time, the density of structural defects increases and the compressive stress decreases. These will degrade the laser laser-damage resistance of fused silica. The results indicate that oxygen ion implantation with appropriate ion energy is helpful to improve the damage resistance capability of fused silica components.
Keywords:  fused silica      oxygen ion implantation      defect      mechanical property      laser damage performance  
Received:  21 January 2021      Revised:  25 February 2022      Accepted manuscript online: 
PACS:  42.70.Ce (Glasses, quartz)  
  68.35.Dv (Composition, segregation; defects and impurities)  
  78.68.+m (Optical properties of surfaces)  
  81.65.-b (Surface treatments)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.12105037) and the Key Project of National Natural Science Foundation of China-China Academy of Engineering Physics Joint Foundation (Grant No.U1830204).
Corresponding Authors:  Bo Li,E-mail:libcx@uestc.edu.cn;Xia Xiang,E-mail:xiaxiang@uestc.edu.cn     E-mail:  libcx@uestc.edu.cn;xiaxiang@uestc.edu.cn
About author:  2022-3-3

Cite this article: 

Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛) Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition 2022 Chin. Phys. B 31 054214

[1] Spaeth M, Manes K, Bowers M and Celliers P 2016 Fusion Sci. Technol. 69 366
[2] Casner A, Caillaud T, Darbon S, Duval A, Thfoin I, Jadaud J P, Lebreton J P, Reverdin C, Rosse B, Rosch R, Blanchot N, Villette B, Wrobel R and Miquel J L 2014 High Energy Density Phys. 17 2
[3] Zheng W, Wei X, Zhu Q, Jing F, Hu D, Su J, Zheng K, Yuan X, Zhou H, Dai W, Zhou W, Wang F, Xu D, Xie X, Feng B, Peng Z, Guo L, Chen Y, Zhang X, Liu L, Lin D, Dang Z, Xiang Y and Deng X 2016 High Power Laser Sci. Eng. 4 e21
[4] Bercegol H, Bouchut P, Lamaignere L, Garrec B Le and Raze G 2014 Proc. SPIE 5273 312
[5] Neauport J, Cormont P, Lamaignere L, Ambard C, Pilon F and Bercegol H 2008 Opt. Commun. 281 3802
[6] Feit M D and Rubenchik A 2004 Proc. SPIE 5273 264
[7] Kucheyev S and Demos S 2003 Appl. Phys. Lett. 82 3230
[8] Vaccaro L, Cannas M, Radzig V and Boscaino R 2008 Phys. Rev. B 78 075421
[9] Menapace J A 2010 Proc. SPIE. 7842 78421W
[10] Suratwala T, Miller P, Bude J, Steele W, Shen N, Monticelli M, Feit M, Laurence T, Norton M, Carr C and Wong L 2011 J. Am. Ceram. Soc. 94 416
[11] Li B, Hou C, Tian C, Guo J, Xiang X, Jiang X, Liao W, Yuan X, Jiang X and Zu X 2019 Appl. Surf. Sci. 508 145186
[12] Sun L, Liu H, Huang J, Ye X, Cheng Q, Zhou X, Wang F, Jiang X and Wu W 2013 Proc. SPIE 8786 87860P
[13] Stevens-Kalceff M and Wong J 2005 J. Appl. Phys. 97 113519
[14] Zheng Z, Zu X T, Zhang Y and Zhou W 2020 Mater. Today Phys. 15 100262
[15] Xu S Z, Yuan X D, Zu X T, Lv H B, Jiang X L, Zhang L and Zheng W G 2007 J. Non-Cryst. Solids 353 4212
[16] Stevens-Kalceff M, Stesmans A and Wong J 2002 Appl. Phys. Lett. 80 758
[17] He J X, Shen Y, Li B, Xiang X, Li S, Fang X, Xiao H Y, Zu X T and Qiao L 2021 Opt. Mater. 111 110611
[18] Silin A 1991 Proc. SPIE 1513 270
[19] Derryberry S L, Weeks R A, Weller R A and Mendenhall M 1991 Nucl. Instrum. Meth. B 59-60 1320
[20] Griscom D L 1985 J. Non-Cryst. Solids 73 51
[21] Chinellato V, Gottardi V, Russo S Lo, Mazzoldi P, Nicoletti F and Polato P 1982 Radiation Effects 65 31
[22] Idé J, Cornil D, Jacques A, Navet B, Boulanger P, Ventelon L, Lazzaroni R, Beljonne D and Cornil J 2019 Adv. Theor. Simul. 2 1900039
[23] EerNisse E 1974 J. Appl. Phys. 45 167
[24] Wang C Z, Wang H X, Krishna S, Morozov E V and Hazell P J 2021 Thin-Walled Structures 159 107281
[25] Li B, Xiang X, Liao W, Han S, Yu J, Jiang X, Mushtaq M, Yuan X, Zu X and Fu Y 2019 Appl. Surf. Sci. 471 786
[26] Felter T E, Hrubesh L, Kubota A Davila L and Caturla 2003 Nucl. Instrum. Meth. B 207(1) 72
[27] Riede W, Willamowski U, Dieckmann M, Ristau D, Broulik U and Steiger B 1998 Proc. SPIE 3244 96
[28] Glebov L B 2002 Proc. SPIE 4679 321
[29] Pacchioni G and Ferrario R 1998 Phys. Rev. B 58 6090
[30] Fitting H J, Barfels T, Trukhin A, Schmidt B, Gulans A and Czarnowski A 2002 J. Non-Cryst. Solids 303 218
[31] Skuja L 1992 J. Non-Cryst. Solids 149 77
[32] Skuja L 1994 J. Non-Cryst. Solids 179 51
[33] Tomozawa M, Hong J W and Ryu S R 2005 J. Non-Cryst. Solids 351 1054
[34] Zhu L N, Xu B S Xu, Wang H D and Wang C B 2015 Crit. Rev. Solid State 40 77
[35] Lee Y and Kwon D 2003 Scr. Mater. 49 459
[36] Pharr G M, Oliver W and Brotzen F R 1992 J. Mater. Res. 7 613
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[4] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[5] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Direct visualization of structural defects in 2D semiconductors
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
[8] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
[9] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
[10] Transition state and formation process of Stone—Wales defects in graphene
Jian-Hui Bai(白建会), Yin Yao(姚茵), and Ying-Zhao Jiang(姜英昭). Chin. Phys. B, 2022, 31(3): 036102.
[11] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[12] Effect of heavy ion irradiation on the interface traps of AlGaN/GaN high electron mobility transistors
Zheng-Zhao Lin(林正兆), Ling Lü(吕玲), Xue-Feng Zheng(郑雪峰), Yan-Rong Cao(曹艳荣), Pei-Pei Hu(胡培培), Xin Fang(房鑫), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2022, 31(3): 036103.
[13] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[14] Radiation effects of 50-MeV protons on PNP bipolar junction transistors
Yuan-Ting Huang(黄垣婷), Xiu-Hai Cui(崔秀海), Jian-Qun Yang(杨剑群), Tao Ying(应涛), Xue-Qiang Yu(余雪强), Lei Dong(董磊), Wei-Qi Li(李伟奇), and Xing-Ji Li(李兴冀). Chin. Phys. B, 2022, 31(2): 028502.
[15] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
No Suggested Reading articles found!