Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 034203    DOI: 10.1088/1674-1056/21/3/034203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

The Fourier slice transformation of the Wigner operator and the quantum tomogram of the density operator

Wang Tong-Tong(王彤彤)a) and Fan Hong-Yi(范洪义)b)
a. School of Mathematics and Physics, Huangshi Institute of Technology, Huangshi 435003, China;
b. Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Abstract  Using the Weyl quantization scheme and based on the Fourier slice transformation (FST) of the Wigner operator, we construct a new expansion formula of the density operator ρ, with the expansion coefficient being the FST of ρ's classical Weyl correspondence, and the latter the Fourier transformation of ρ's quantum tomogram. The coordinate-momentum intermediate representation is used as the Radon transformation of the Wigner operator.
Keywords:  quantum tomography      Fourier slice transformation      density operator  
Received:  27 July 2011      Revised:  31 August 2011      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
Fund: Project supported by the Natural Science Foundation of Huangshi Institute of Technology, China (Grant No. 10yjz03R) and the National Natural Science Foundation of China (Grant No. 10874174).
Corresponding Authors:  Fan Hong-Yi,wtt918@mail.ustc.edu.cn     E-mail:  wtt918@mail.ustc.edu.cn

Cite this article: 

Wang Tong-Tong(王彤彤) and Fan Hong-Yi(范洪义) The Fourier slice transformation of the Wigner operator and the quantum tomogram of the density operator 2012 Chin. Phys. B 21 034203

[1] Cohen-Tannoudji C, Diu B and Laboe F 1991 Quantum Mechanics 2nd edn. (New York: Wiley)
[02] Schleich W P 2001 Quantum Optics in Phase Space (Birlin: Wiley-VCH)
[03] Vogel K and Risken H 1989 Phys. Rev. A 40 2847
[04] Smithey D T, Beck M and Raymer M G 1993 Phys. Rev. Lett. 70 1244
[05] Kak A C and Slaney M 2001 Principles of Computerized Tomographic Imaging (New York: SIAM Philadelphia)
[06] Xu X X, Yuan H C and Fan H Y Chin. Phys. B 20 024203
[07] Wang T T and Fan H Y 2009 Commun. Theor. Phys. 52 829
[08] Weyl H 1927 Z. Phys. 46 1
[09] Wigner E 1932 Phys. Rev. 40 749
[10] Fan H Y and Zaidi H R 1987 Phys. Lett. A 124 303
[11] Fan H Y 1992 J. Phys. A 25 3443
[12] Fan H Y 2010 Chin. Phys. B 19 050303
[13] Fan H Y 2003 J. Opt. B: Quant. Semiclass. Opt. 5 R147
[14] Fan H Y, Lu H L and Fan Y 2006 Ann. Phys. 321 480
[15] Fan H Y and Cheng H L 2001 Chin. Phys. Lett. 18 850
[16] Xu Y J, Fan H Y and Liu Q Y 2010 Chin. Phys. B 19 020303
[17] Fan H Y and Hu L Y 2009 Opt. Commun. 282 3734
[18] Chen J H and Fan H Y 2009 Chin. Phys. B 18 3714
[1] Gazeau-Klauder coherent states examined from the viewpoint of diagonal ordering operation technique
Dušan Popov, Romeo Negrea, Miodrag Popov. Chin. Phys. B, 2016, 25(7): 070301.
[2] Quantum metrology
Xiang Guo-Yong (项国勇), Guo Guang-Can (郭光灿). Chin. Phys. B, 2013, 22(11): 110601.
[3] New equation for deriving pure state density operators by Weyl correspondence and Wigner operator
Xu Ye-Jun(许业军), Fan Hong-Yi(范洪义), and Liu Qiu-Yu(刘秋宇). Chin. Phys. B, 2010, 19(2): 020303.
[4] New approach for deriving density operator for describing continuum photodetection process
Fan Hong-Yi(范洪义) and Hu Li-Yun(胡利云). Chin. Phys. B, 2009, 18(3): 1061-1064.
No Suggested Reading articles found!