Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 036102    DOI: 10.1088/1674-1056/ac20c5
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Transition state and formation process of Stone—Wales defects in graphene

Jian-Hui Bai(白建会)1, Yin Yao(姚茵)2,†, and Ying-Zhao Jiang(姜英昭)3
1 School of Aviation and Mechanical Engineering, Changzhou Institute of Technology, Changzhou 213032, China;
2 School of Sciences, Changzhou Institute of Technology, Changzhou 213032, China;
3 Department of Physics, Guizhou Minzu University, Guiyang 550025, China
Abstract  Stone—Wales (SW) defects are possibly formed in graphene and other two-dimensional materials, and have multiple influence on their physical and chemical properties. In this study, the transition state of SW defects in graphene is determined with the fully discrete Peierls theory. Furthermore, the atomic formation process is investigated by means of ab-initio simulations. The atomic structure change and energetics of the SW transformation are revealed. It is found that the transition state is at the SW bond rotation of 34.5° and the activation energy barrier is about 12 eV. This work provides a new method to investigate SW transformations in graphene-like materials and to explore unknown SW-type defects in other 2D materials.
Keywords:  graphene      Stone—Wales (SW) defect      transition state      fully discrete Peierls theory  
Received:  24 June 2021      Revised:  28 July 2021      Accepted manuscript online:  25 August 2021
PACS:  61.72.Lk (Linear defects: dislocations, disclinations)  
  61.48.Gh (Structure of graphene)  
  61.72.Bb (Theories and models of crystal defects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11847089), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 20KJB430002), and GuiZhou Provincial Department of Science and Technology, China (Grant No. QKHJC[2019]1167).
Corresponding Authors:  Yin Yao     E-mail:  yaoy@cit.edu.cn

Cite this article: 

Jian-Hui Bai(白建会), Yin Yao(姚茵), and Ying-Zhao Jiang(姜英昭) Transition state and formation process of Stone—Wales defects in graphene 2022 Chin. Phys. B 31 036102

[1] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451
[2] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[3] Lü X Y and Li Z Q 2019 Acta Phys. Sin. 68 220303 (in Chinese)
[4] Zhang N, Liu B and Lin L W 2020 Acta Phys. Sin. 69 016101 (in Chinese)
[5] Xu W Z, Qin L X, Ye X G, Lin F, Yu D P and Liao Z M 2020 Chin. Phys. B 29 057502
[6] Kang Y J, Chen Y P, Yuan J R, Yan X H and Xie Y E 2020 Chin. Phys. B 29 057303
[7] Yang H, Gao Y X, Niu W H, Chang X, Huang L, Liu J Z, Mai Y Y, Feng X L, Du S X and Gao H J 2021 Chin. Phys. B 30 077306
[8] Suenaga K, Wakabayashi H, Koshino M, Sato Y, Urita K and Iijima S 2007 Nat. Nanotechnol. 2 358
[9] Meyer J C, Kisielowski C, Erni R, Rossell M D, Crommie M F and Zettl A 2008 Nano Lett. 8 3582
[10] Banhart F, Kotakoski J and Krasheninnikov A V 2011 ACS Nano 5 26
[11] Stone A and Wales D 1986 Chem. Phys. Lett. 128 501
[12] Hu W and Yang J 2015 J. Phys. Chem. C 119 20474
[13] Xue S W, Chen J and Zhang J 2013 Chin. Phys. Lett. 30 103102
[14] Warner J H, Margine E R, Mukai M, Robertson A W, Giustino F and Kirkland A I 2012 Science 337 209
[15] Samsonidze G G, Samsonidze G G and Yakobson B I 2002 Comput. Mater. Sci. 23 62
[16] Yazyev O V and Helm L 2007 Phys. Rev. B 75 125408
[17] Ng T, Yeo J and Liu Z 2012 Carbon 50 4887
[18] Wang S and Wang R 2013 Europhys. Lett. 104 26002
[19] Wang R, Yang J, Wu X and Wang S 2016 Nanoscale 8 8210
[20] Xu W, Zhan F, Laref A, Wang A and Wu X 2019 J. Electron. Mater. 48 3763
[21] Skowron S T, Lebedeva I V, Popov A M and Bichoutskaia E 2015 Chem. Soc. Rev. 44 3143
[22] Wang Z, Zhou Y G, Bang J, Prange M P, Zhang S B and Gao F 2012 J. Phys. Chem. A 116 16070
[23] Li L, Reich S and Robertson J 2005 Phys. Rev. B 72 184109
[24] Wang S, Yao Y and Wang R 2015 Eur. Phys. J. B 88 226
[25] Wang S, Zhang S, Bai J and Yao Y 2015 J. Appl. Phys. 118 244903
[26] Wang S, Yao Y, Bai J and Wang R 2017 Philos. Mag. 97 759
[27] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[28] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[29] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[30] Yao Y, Wang S, Bai J and Wang R 2016 Physica E 84 340
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[7] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[8] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[13] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[14] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
[15] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
No Suggested Reading articles found!