|
|
Direct visualization of structural defects in 2D semiconductors |
Yutuo Guo(郭玉拓)1,2, Qinqin Wang(王琴琴)1,2, Xiaomei Li(李晓梅)1,2, Zheng Wei(魏争)1,2, Lu Li(李璐)1,2, Yalin Peng(彭雅琳)1,2, Wei Yang(杨威)1,2, Rong Yang(杨蓉)1,2,3, Dongxia Shi(时东霞)1,2, Xuedong Bai(白雪冬)1,2, Luojun Du(杜罗军)1,2, and Guangyu Zhang(张广宇)1,2,3,† |
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Science, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Songshan-Lake Materials Laboratory, Dongguan 523808, Guangdong Province, China |
|
|
Abstract Direct visualization of the structural defects in two-dimensional (2D) semiconductors at a large scale plays a significant role in understanding their electrical/optical/magnetic properties, but is challenging. Although traditional atomic resolution imaging techniques, such as transmission electron microscopy and scanning tunneling microscopy, can directly image the structural defects, they provide only local-scale information and require complex setups. Here, we develop a simple, non-invasive wet etching method to directly visualize the structural defects in 2D semiconductors at a large scale, including both point defects and grain boundaries. Utilizing this method, we extract successfully the defects density in several different types of monolayer molybdenum disulfide samples, providing key insights into the device functions. Furthermore, the etching method we developed is anisotropic and tunable, opening up opportunities to obtain exotic edge states on demand.
|
Received: 15 March 2022
Revised: 06 April 2022
Accepted manuscript online: 14 April 2022
|
PACS:
|
61.72.Ff
|
(Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.))
|
|
68.65.-k
|
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
|
|
Fund: Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B0101340001), the Strategic Priority Research Program of Chinese Academy of Sciences (CAS) (Grant No. XDB30000000), and the National Natural Science Foundation of China (Grant Nos. 61888102 and 11834017). |
Corresponding Authors:
Guangyu Zhang
E-mail: gyzhang@iphy.ac.cn
|
Cite this article:
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇) Direct visualization of structural defects in 2D semiconductors 2022 Chin. Phys. B 31 076105
|
[1] Li S L, Tsukagoshi K, Orgiu E and Samori P 2016 Chem. Soc. Rev. 45 118 [2] Zheng J, Du H, Jiang F, Zhang Z, Sa B, He W, Jiao L and Zhan H 2021 Nano Lett. 21 1260 [3] Lee Y H, Zhang X Q, Zhang W J, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S, Li L J and Lin T W 2012 Adv. Mater. 24 2320 [4] Liu K K, Zhang W J, Lee Y H, Lin Y C, Chang M T, Su C, Chang C S, Li H, Shi Y M, Zhang H, Lai C S and Li L J 2012 Nano Lett. 12 1538 [5] Ding Z W, Pei Q X, Jiang J W and Zhang Y W 2015 J. Phys. Chem. C 119 16358 [6] McDonnell S, Addou R, Buie C, Wallace R M and Hinkle C L 2014 ACS Nano 8 2880 [7] Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy V B, Eda G and Chhowalla M 2013 Nano Lett. 13 6222 [8] Shi Y, Zhou Y, Yang D R, Xu W X, Wang C, Wang F B, Xu J J, Xia X H and Chen H Y 2017 J. Am. Chem. Soc. 139 15479 [9] Wang X, Zhang Y, Si H, Zhang Q, Wu J, Gao L, Wei X, Sun Y, Liao Q, Zhang Z, Ammarah K, Gu L, Kang Z and Zhang Y 2020 J. Am. Chem. Soc. 142 4298 [10] van der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y, Lee G H, Heinz T F, Reichman D R, Muller D A and Hone J C 2013 Nat. Mater. 12 554 [11] Chen Y, Huang S, Ji X, Adepalli K, Yin K, Ling X, Wang X, Xue J, Dresselhaus M, Kong J and Yildiz B 2018 ACS Nano 12 2569 [12] Hong J, Hu Z, Probert M, Li K, Lv D, Yang X, Gu L, Mao N, Feng Q, Xie L, Zhang J, Wu D, Zhang Z, Jin C, Ji W, Zhang X, Yuan J and Zhang Z 2015 Nat. Commun. 6 6293 [13] Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I and Idrobo J C 2013 Nano Lett. 13 2615 [14] Lin Y C, Bjorkman T, Komsa H P, Teng P Y, Yeh C H, Huang F S, Lin K H, Jadczak J, Huang Y S, Chiu P W, Krasheninnikov A V and Suenaga K 2015 Nat. Commun. 6 6736 [15] Addou R, Colombo L and Wallace R M 2015 ACS Appl. Mater. Interfaces 7 11921 [16] Yamamoto M, Einstein T L, Fuhrer M S and Cullen W G 2013 J. Phys. Chem. C 117 25643 [17] Ryu Y, Kim W, Koo S, Kang H, Watanabe K, Taniguchi T and Ryu S 2017 Nano Lett. 17 7267 [18] Zhou H, Yu F, Liu Y, Zou X, Cong C, Qiu C, Yu T, Yan Z, Shen X, Sun L, Yakobson B I and Tour J M 2013 Nano Res. 6 703 [19] Jeong H Y, Lee S Y, Ly T H, Han G H, Kim H, Nam H, Jiong Z, Shin B G, Yun S J, Kim J, Kim U J, Hwang S and Lee Y H 2016 ACS Nano 10 770 [20] Shi Y, Huang J K, Jin L, Hsu Y T, Yu S F, Li L J and Yang H Y 2013 Sci. Rep. 3 1839 [21] Ye G, Gong Y, Lin J, Li B, He Y, Pantelides S T, Zhou W, Vajtai R and Ajayan P M 2016 Nano Lett. 16 1097 [22] Xu C Y, Qin J K, Yan H, Li Y, Shao W Z and Zhen L 2018 Appl. Surf. Sci. 452 451 [23] Wu S, Yang R, Shi D and Zhang G 2012 Nanoscale 4 2005 [24] Li J, Hu S, Chen Z, Liang Y, Kang H, Zhang Y, Sui Y, Wang S, Yu G, Peng S, Jin Z and Liu X 2020 Appl. Surf. Sci. 510 145412 [25] Wang Z, Li Q, Xu H, Dahl-Petersen C, Yang Q, Cheng D, Cao D, Besenbacher F, Lauritsen J V, Helveg S and Dong M 2018 Nano Energy 49 634 [26] Wang J, Xu X, Qiao R, Liang J, Liu C, Zheng B, Liu L, Gao P, Jiao Q, Yu D, Zhao Y and Liu K 2018 Nano Res. 11 4082 [27] Kim K, Lee H B, Johnson R W, Tanskanen J T, Liu N, Kim M G, Pang C, Ahn C, Bent S F and Bao Z 2014 Nat. Commun. 5 4781 [28] Yu S U, Park B, Cho Y, Hyun S, Kim J K and Kim K S 2014 ACS Nano 8 8662 [29] Ago H, Fukamachi S, Endo H, Solis-Fernandez P, Yunus R M, Uchida Y, Panchal V, Kazakova O and Tsuji M 2016 ACS Nano 10 3233 [30] Warren I H and Mounsey D M 1983 Hydrometallurgy 10 343 [31] Wan W, Zhan L J, Xu B B, Zhao F, Zhu Z W, Zhou Y H, Yang Z L, Shih T and Cai W W 2017 Small 13 1603549 [32] Yu H, Yang Z, Du L, Zhang J, Shi J, Chen W, Chen P, Liao M, Zhao J, Meng J, Wang G, Zhu J, Yang R, Shi D, Gu L and Zhang G 2017 Small 13 1603005 [33] Wang Q Q, Li N, Tang J, Zhu J Q, Zhang Q H, Jia Q, Lu Y, Wei Z, Yu H, Zhao Y C, Guo Y T, Gu L, Sun G, Yang W, Yang R, Shi D X and Zhang G Y 2020 Nano Lett. 20 7193 [34] Stehle Y Y, Sang X, Unocic R R, Voylov D, Jackson R K, Smirnov S and Vlassiouk I 2017 Nano Lett. 17 7306 [35] Yu H, Liao M Z, Zhao W J, Liu G D, Zhou X J, Wei Z, Xu X Z, Liu K H, Hu Z H, Deng K, Zhou S Y, Shi J A, Gu L, Shen C, Zhang T T, Du L J, Xie L, Zhu J Q, Chen W, Yang R, Shi D X and Zhang G Y 2017 ACS Nano 11 12001 [36] Lee J Y, Kim J H, Jung Y, Shin J C, Lee Y, Kim K, Kim N, van der Zande A M, Son J and Lee G H 2021 Commun. Mater. 2 80 [37] Cheng C C, Lu A Y, Tseng C C, Yang X L, Hedhili M N, Chen M C, Wei K H and Li L J 2016 Nano Energy 30 846 [38] Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X and Li L J 2017 Nat. Nanotechnol. 12 744 [39] Zhu J Q, Wang Z C, Yu H, Li N, Zhang J, Meng J L, Liao M Z, Zhao J, Lu X B, Du L J, Yang R, Shi D, Jiang Y and Zhang G Y 2017 J. Am. Chem. Soc. 139 10216 [40] Shi S, Sun Z and Hu Y H 2018 J. Mater. Chem. A 6 23932 [41] Munkhbat B, Yankovich A B, Baranov D G, Verre R, Olsson E and Shegai T O 2020 Nat. Commun. 11 4604 [42] Li M Y, Shi Y M, Cheng C C, Lu L S, Lin Y C, Tang H L, Tsai M L, Chu C W, Wei K H, He J H, Chang W H, Suenaga K and Li L J 2015 Science 349 524 [43] Zhang Z W, Chen P, Duan X D, Zang K T, Luo J and Duan X F 2017 Science 357 788 [44] Li X, Dong J, Idrobo J C, Puretzky A A, Rouleau C M, Geohegan D B, Ding F and Xiao K 2017 J. Am. Chem. Soc. 139 482 [45] Ma T, Ren W C, Liu Z B, Huang L, Ma L P, Ma X L, Zhang Z Y, Peng L M and Cheng H M 2014 ACS Nano 8 12806 [46] Jaramillo T F, Jorgensen K P, Bonde J, Nielsen J H, Horch S and Chorkendorff I 2007 Science 317 100 [47] Yin X, Ye Z, Chenet D A, Ye Y, O'Brien K, Hone J C and Zhang X 2014 Science 344 488 [48] Li Y F, Zhou Z, Zhang S B and Chen Z F 2008 J. Am. Chem. Soc. 130 16739 [49] Bollinger M V, Lauritsen J V, Jacobsen K W, Norskov J K, Helveg S and Besenbacher F 2001 Phys. Rev. Lett. 87 196803 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|