Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 044102    DOI: 10.1088/1674-1056/ac2e60
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High-sensitivity Bloch surface wave sensor with Fano resonance in grating-coupled multilayer structures

Daohan Ge(葛道晗)1,2,†, Yujie Zhou(周宇杰)1, Mengcheng Lv(吕梦成)1, Jiakang Shi(石家康)1, Abubakar A. Babangida1, Liqiang Zhang(张立强)1,2,‡, and Shining Zhu(祝世宁)2
1 Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, China;
2 National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
Abstract  A new type of device consisting of a lithium niobate film coupled with a distributed Bragg reflector (DBR) was theoretically proposed to explore and release Bloch surface waves for applications in sensing and detection. The film and grating made of lithium niobate (LiNbO3) were placed on both sides of the DBR and a concentrated electromagnetic field was formed at the film layer. By adjusting the spatial incidence angle of the incident light, two detection and analysis modes were obtained, including surface diffraction detection and guided Bloch detection. Surface diffraction detection was used to detect the gas molecule concentrations, while guided Bloch detection was applied for the concentration detection of biomolecule-modulated biological solutions. According to the drift of the Fano curve, the average sensor sensitivities from the analysis of the two modes were 1560 °/RIU and 1161 °/RIU, and the maximum detection sensitivity reached 2320 °/RIU and 2200 °/RIU, respectively. This study revealed the potential application of LiNbO3 as a tunable material when combined with DBR to construct a new type of biosensor, which offered broad application prospects in Bloch surface wave biosensors.
Keywords:  lithium niobate      Bloch surface wave      Fano resonance      grating structure      biosensor  
Received:  04 July 2021      Revised:  05 October 2021      Accepted manuscript online:  11 October 2021
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: Project supported by Natural Science Foundation of Jiangsu Province, China (Grant No. BK20180098) and National Laboratory of Solid State Microstructures, Nanjing University (Grant No. M33042).
Corresponding Authors:  Daohan Ge, Liqiang Zhang     E-mail:  gedaohan@ujs.edu.cn;zhanglq4158@ujs.edu.cn

Cite this article: 

Daohan Ge(葛道晗), Yujie Zhou(周宇杰), Mengcheng Lv(吕梦成), Jiakang Shi(石家康), Abubakar A. Babangida, Liqiang Zhang(张立强), and Shining Zhu(祝世宁) High-sensitivity Bloch surface wave sensor with Fano resonance in grating-coupled multilayer structures 2022 Chin. Phys. B 31 044102

[1] Pochi Yeh A Y and Cho A Y 1978 Appl. Phys. Lett. 32 104
[2] Meade R D, Brommer K D, Rappe A M and Joannopoulos J D 1991 Phys. Rev. B 44 10961
[3] Kang X B, Liu L J, Lu H, Li H D and Wang Z G 2016 J. Opt. Soc. Am. A 33 997
[4] Aurelio D and Liscidini M 2017 Phys. Rev. B 96 045308
[5] Sinibaldi A, Fieramosca A, Rizzo R, Anopchenko A, Danz N, Munzert P, Magistris C, Barolo C and Michelotti F 2014 Opt. Lett. 39 2947
[6] Inan H, Poyraz M, Inci F, Lifson M A, Baday M, Cunningham B T and Demirci U 2017 Chem. Soc. Rev. 46 366
[7] Hu S, Zhao Y, Qin K, Retterer S T, Kravchenko I I and Weiss S M 2014 Acs Photon. 1 590
[8] Menabde S G, Mason D R, Kornev E E, Lee C and Park N 2016 Sci. Rep. 6 21523
[9] Zhong T and Zhang H 2020 Chin. Phys. B 29 094101
[10] Ge D H, Wei J X, Ding J, Zhang J, Ma C, Wang M C, Zhang L Q and Zhu S N 2020 ACS Appl. Nano Mater. 3 3011
[11] Zheng G, Cong J, Xu L and Wang J 2017 Appl. Phys. Express 10 042202
[12] Geng Y F, Wang Z N, Ma Y G and Gao F 2019 Acta Phys. Sin. 68 224101 (in Chinese)
[13] Wang S S, Wang D Q, Hu X P, Li T and Zhu S N 2016 Chin. Phys. B 25 077301
[14] Zheng G, Cong J, Chen Y, Xu L and Xiao S 2017 Opt. Lett. 42 2984
[15] Kovalevich T, Ndao A, Suarez M, Tumenas S, Balevicius Z, Ramanavicius A, Baleviciute I, Hayrinen M, Roussey M, Kuittinen M, Grosjean T and Bernal M P 2016 Opt. Lett. 41 5616
[16] Shi J, Rezk A, Ma C, Zhang L, Yang P, Ge D and Zhu S 2019 Mater. Res. Experss 6 095042
[17] Kang X B, Wen L W and Wang Z G 2017 Opt. Commun. 383 531
[18] Kang X B, Lu H and Wang Z G 2018 Opt. Express 26 12769
[19] Ge D, Shi J, Rezk A, Ma C, Zhang L, Yang P and Zhu S 2019 Nanoscale Res. Lett. 14 319
[20] Balevicius Z and Baskys A 2019 Materials 12 3147
[21] Gryga M, Ciprian D and Hlubina P 2020 Sensors-Basel 20 5119
[22] Kovalevich T, Belharet D, Robert L, Kim M S, Herzig H P, Grosjean T and Bernal M P 2017 Photon. Res. 5 649
[23] Yang Q R, Qin L L, Cao G Y, Zhang C and Li X F 2018 Opt. Lett. 43 639
[24] Toma K, Descrovi E, Toma M, Ballarini M, Mandracci P, Giorgis F, Mateescu A, Jonas U, Knoll W and Dostalek J 2013 Biosens. Bioelectron. 43 108
[25] Ge D, Shi J, Rezk A, Zhang Y, Wei J, Zhang L and Zhu S 2019 Appl. Opt. 58 3187
[26] Wang F and Wei B 2019 Acta Phys. Sin. 68 244101 (in Chinese)
[27] Roussey M, Bernal M P, Courjal N, Van Labeke D, Baida F I and Salut R 2006 Appl. Phys. Lett. 89 241110
[28] Lu H, Sadani B, Courjal N, Ulliac G, Smith N, Stenger V, Collet M, Baida F I and Bernal M P 2012 Opt. Express 20 2974
[29] Chen L and Reano R M 2012 Opt. Express 20 4032
[30] Qiu W, Lu H, Baida F I and Bernal M P 2017 Photon. Res. 5 212
[31] Wang C, Zhang M, Stern B, Lipson M and Loncar M 2018 Opt. Express 26 1547
[32] Wang J, Bo F, Wan S, Li W, Gao F, Li J, Zhang G and Xu J 2015 Opt. Express 23 23072
[33] Luo X W, Zhang Q Y, Xu P, Zhang R, Liu H Y, Sun C W, Gong Y X, Xie Z D and Zhu S N 2019 Phys. Rev. A 99 063833
[34] Sun C W, Wu S H, Duan J C, Zhou J W, Xia J L, Xu P, Xie Z D, Gong Y X and Zhu S N 2019 Opt. Lett. 44 5598
[35] Lerario G, Ballarini D, Dominici L, Fieramosca A, Cannavale A, Holwill M, Kozikov A, Novoselov K S and Gigli G 2017 Appl. Sci.-Basel 7 1217
[36] Gan S W, Wang H Q, Liang J W, Dai X Y and Xiang Y J 2019 IEEE Sens. J. 19 8675
[37] Zou X J, Zheng G G and Chen Y Y 2018 Chin. Phys. B 27 054102
[38] Liao M L, Wei Y Y, Wang H L, Huang Y, Xu J, Liu Y, Guo G, Niu X J, Gong Y B and Park G S 2016 Chin. Phys. Lett. 33 090701
[39] Fan S H and Joannopoulos J D 2002 Phys. Rev. B 65 235112
[40] Qi Y P, Wang L Y, Zhang Y, Zhang T, Zhang B H, Deng X Y and Wang X X 2020 Chin. Phys. B 29 067303
[41] Maurya J B and Prajapati Y K 2016 Plasmonics 12 1121
[42] Cong J, Liu W, Zhou Z, Ren N, Ding G, Chen M and Yao H 2016 Opt. Mater. 62 261
[43] Magnusson R and Shokooh-Saremi M 2008 Opt. Express 16 3456
[44] Magnusson R, Wawro D, Zimmerman S and Ding Y W 2011 Sensors 11 1476
[45] Takashima Y, Haraguchi M and Naoi Y 2018 Sensor Actuat. B-Chem. 255 1711
[46] Li J S 2011 Opt. Laser Technol. 43 989
[47] Wang H H, Liu W X, Ma J, Liang Q, Qin W, Lartey P O and Feng X J 2020 Int. J. Min. Met. Mater. 27 830
[48] Jena S, Tokas R B, Thakur S and Udupa D V 2021 Physica E 126 114477
[1] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[2] THz wave generation by repeated and continuous frequency conversions from pump wave to high-order Stokes waves
Zhongyang Li(李忠洋), Qianze Yan(颜钤泽), Pengxiang Liu(刘鹏翔), Binzhe Jiao(焦彬哲), Gege Zhang(张格格), Zhiliang Chen(陈治良), Pibin Bing(邴丕彬), Sheng Yuan(袁胜), Kai Zhong(钟凯), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(7): 074209.
[3] Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film
Xiangxian Wang(王向贤), Jian Zhang(张健), Jiankai Zhu(朱剑凯), Zao Yi(易早), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(2): 024210.
[4] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
[5] High-sensitivity refractive index sensors based on Fano resonance in a metal-insulator-metal based arc-shaped resonator coupled with a rectangular stub
Shubin Yan(闫树斌), Hao Su(苏浩), Xiaoyu Zhang(张晓宇), Yi Zhang(张怡), Zhanbo Chen(陈展博), Xiushan Wu(吴秀山), and Ertian Hua(华尔天). Chin. Phys. B, 2022, 31(10): 108103.
[6] High-efficiency terahertz wave generation with multiple frequencies by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Binzhe Jiao(焦彬哲), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Gege Zhang(张格格), Qianze Yan(颜钤泽), Pibin Bing(邴丕彬), Fengrui Zhang(张风蕊), Zhan Wang(王湛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(4): 044211.
[7] Effect of thickness variations of lithium niobate on insulator waveguide on the frequency spectrum of spontaneous parametric down-conversion
Guang-Tai Xue(薛广太), Xiao-Hui Tian(田晓慧), Chi Zhang(张弛), Zhenda Xie(谢臻达), Ping Xu(徐平), Yan-Xiao Gong(龚彦晓), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2021, 30(11): 110313.
[8] Novel high-quality Fano resonance based on metal-insulator-metal waveguide with L-shaped resonators
Changsong Wu(伍长松) and Jun Zhu(朱君). Chin. Phys. B, 2021, 30(10): 104210.
[9] Widely tunable single-photon source with high spectral-purity from telecom wavelength to mid-infrared wavelength based on MgO:PPLN
Chang-Wei Sun(孙昌伟), Yu Sun(孙宇), Jia-Chen Duan(端家晨), Guang-Tai Xue(薛广太), Yi-Chen Liu(刘奕辰), Liang-Liang Lu(陆亮亮), Qun-Yong Zhang(张群永), Yan-Xiao Gong(龚彦晓), Ping Xu(徐平), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2021, 30(10): 100312.
[10] Broadband and efficient second harmonic generation in LiNbO3-LiTaO3 composite ridge waveguides at telecom-band
Xin-Tong Zhang(张欣桐). Chin. Phys. B, 2021, 30(1): 014205.
[11] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[12] Tunability of Fano resonance in cylindrical core-shell nanorods
Ben-Li Wang(王本立). Chin. Phys. B, 2020, 29(4): 045202.
[13] Sensitivity enhancement of WS2-coated SPR-based optical fiber biosensor for detecting glucose concentration
Yun Cai(蔡云), Wei Li(李卫), Ye Feng(冯烨), Jian-Sheng Zhao(赵建胜), Gang Bai(白刚), Jie Xu(许杰), and Jin-Ze Li(李金泽)$. Chin. Phys. B, 2020, 29(11): 110701.
[14] Design and optimization of microstructure optical fiber sensor based on bimetal plasmon mode interaction
Meng Wu(吴萌), Xin-Yu Liu(刘欣宇), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Bo-Yao Li(李波瑶), Zhi-Yun Hou(侯峙云). Chin. Phys. B, 2019, 28(12): 124202.
[15] Multiple Fano resonances in nanorod and nanoring hybrid nanostructures
Xijun Wu(吴希军), Ceng Dou(窦层), Wei Xu(徐伟), Guangbiao Zhang(张广彪), Ruiling Tian(田瑞玲), Hailong Liu(刘海龙). Chin. Phys. B, 2019, 28(1): 014204.
No Suggested Reading articles found!