Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 086102    DOI: 10.1088/1674-1056/20/8/086102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

$\gamma$ radiation caused graphene defects and increased carrier density

Han Mai-Xing(韩买兴), Ji Zhuo-Yu(姬濯宇), Shang Li-Wei(商立伟), Chen Ying-Ping(陈映平), Wang Hong(王宏), Liu Xin(刘欣), Li Dong-Mei(李冬梅), and Liu Ming(刘明)
Laboratory of Nano-Fabrication and Novel Devices Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
Abstract  We report on a micro-Raman investigation of inducing defects in mono-layer, bi-layer and tri-layer graphene by $\gamma$  ray radiation. It is found that the radiation exposure results in two-dimensional (2D) and G band position evolution with the layer number increasing and D and D' bands rising, suggesting the presence of defects and related crystal lattice deformation in graphene. Bi-layer graphene is more stable than mono- and tri-layer graphene, indicating that the former is a better candidate in the application of radiation environments. Also, the DC electrical property of the mono-layer graphene device shows that the defects increase the carrier density.
Keywords:  graphene      $\gamma$  ray radiation      Raman spectrum      defects  
Received:  16 March 2011      Revised:  07 April 2011      Accepted manuscript online: 
PACS:  61.48.Gh (Structure of graphene)  
  68.65.Pq (Graphene films)  
  72.80.Vp (Electronic transport in graphene)  
  73.22.Pr (Electronic structure of graphene)  
Fund: Project partially supported by the National Basic Research Program of China (Grant Nos. 2011CB808404 and 2009CB939703) and the National Natural Science Foundation of China (Grant Nos. 60825403, 90607022, and 61001043).

Cite this article: 

Han Mai-Xing(韩买兴), Ji Zhuo-Yu(姬濯宇), Shang Li-Wei(商立伟), Chen Ying-Ping(陈映平), Wang Hong(王宏), Liu Xin(刘欣), Li Dong-Mei(李冬梅), and Liu Ming(刘明) $\gamma$ radiation caused graphene defects and increased carrier density 2011 Chin. Phys. B 20 086102

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[3] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[4] Farmer D B, Chiu H Y, Lin Y M, Jenkins K A, Xia F and Avouris P 2009 Nano Lett. 9 4474
[5] Li Q, Cheng Z G, Li Z J, Wang Z H and Fang Y 2010 Chin. Phys. B 19 097307
[6] Teweldebrhan D and Balandin A A 2009 Appl. Phys. Lett. 94 013101
[7] Xu M S, Fujita D and Hanagata N 2010 Nanotechnology 21 265705
[8] Ouyang F P, Wang H Y, Li M J, Xiao J and Xu H 2008 Acta Phys. Sin. 57 7132 (in Chinese)
[9] Ouyang F P, Xu H and Lin F 2009 Acta Phys. Sin. 58 4132 (in Chinese)
[10] Ni Z H, Wang H M, Kasim J, Fan H M, Yu T, Wu Y H, Feng Y P and Shen Z X 2007 Nano Lett. 7 2758
[11] Gupta A, Chen G, Joshi P, Tadigadapa S and Eklund P C 2006 Nano Lett. 6 2667
[12] Li Y, Jiang X W, Liu Z F and Liu Z R 2010 Nano Res. 3 545
[13] Lu Y and Guo J 2010 Nano Res. 3 189
[14] Chen D M 2010 Acta Phys. Sin. 59 6399 (in Chinese)
[15] Begliarbekov M, Sul O, Kalliakos S, Yang E H and Strauf S 2010 Appl. Phys. Lett. 97 031908
[16] Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K and Novoselov K S 2009 Science 323 610
[17] Ferrari A C 2007 Solid State Commun. 143 47
[18] Malard L M, Pimenta M A, Dresselhaus G and Dresselhaus M S 2009 Phys. Rep. 473 51
[19] Ni Z H, Wang Y Y, Yu T and Shen Z X 2008 Nano Res. 1 273
[20] Basko D M, Piscanec S and Ferrari A C 2009 Phys. Rev. B 80 165413
[21] Tuinstra F and Koening J L 1970 J. Chem. Phys. 53 1126
[22] Knight D S and White W B 1989 J. Mater. Res. 4 385
[23] Matthews M J, Pimenta M A, Dresselhaus G, Dresselhaus M S and Endo M 1999 Phys. Rev. B 59 6585
[24] Ilyin A M, Daineko E A and Beall G W 2009 Physica E 42 67
[25] Ritter U, Scharff P, Siegmund C, Dmytrenko O P, Kulish N P, Prylutskyy Y I, Belyi N M, Gubanov V A, Komarova L I, Lizunova S V, Poroshin V G, Shlapatskaya V V and Bernas H 2006 Carbon 44 2694
[26] Cataldo F 2000 Carbon 38 623
[27] Hwang J Y, Kuo C C, Chen L C and Chen K H 2010 Nanotechnology 21 465705
[28] Kim K K, Reina A, Shi Y M, Park H, Li L J, Lee Y H and Kong J 2010 Nanotechnology 21 285205
[29] Zhang Y H, Chen Y B, Zhou K G, Liu C H, Zeng J, Zhang H L and Peng Y 2009 Nanotechnology 20 185504
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[3] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[6] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[7] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[8] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[9] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[10] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[11] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[12] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[13] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[14] Direct visualization of structural defects in 2D semiconductors
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
[15] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
No Suggested Reading articles found!