Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 067201    DOI: 10.1088/1674-1056/20/6/067201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin-dependent Breit–Wigner and Fano resonances in photon-assisted electron transport through a semiconductor heterostructure

Hu Li-Yun(胡丽云) and Zhou Bin(周斌)
Department of Physics, Hubei University, Wuhan 430062, China
Abstract  We theoretically investigate the electron transmission through a seven-layer semiconductor heterostructure with the Dresselhaus spin-orbit coupling under two applied oscillating fields. Numerical results show that both of the spin-dependent symmetric Breit-Wigner and the asymmetric Fano resonances appear and that the properties of these two types of resonance peaks are dependent on the amplitude and the relative phases of the two applied oscillating fields. The modulation of the spin-polarization efficiency of transmitted electrons by the relative phase is also discussed.
Keywords:  spin-orbit coupling      Breit-Wigner resonance      Fano resonance  
Received:  10 August 2010      Revised:  25 February 2011      Accepted manuscript online: 
PACS:  72.25.Dc (Spin polarized transport in semiconductors)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  85.75.Mm (Spin polarized resonant tunnel junctions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10974046), Natural Science Foundation of Hubei Province of China (Grant No. 2009CDB360), and the Key Project of Education Department of Hubei Province of China (Grant No. D20101004).

Cite this article: 

Hu Li-Yun(胡丽云) and Zhou Bin(周斌) Spin-dependent Breit–Wigner and Fano resonances in photon-assisted electron transport through a semiconductor heterostructure 2011 Chin. Phys. B 20 067201

[1] Rashba E I 1960 Sov. Phys. Solid State 2 1109
[2] Yang W and Chang K 2006 Phys. Rev. B 74 193314
[3] Li J, Yang W and Chang K 2009 Phys. Rev. B 80 035303
[4] Voskoboynikov A, Liu S S and Lee C P 1998 Phys. Rev. B 58 15397
[5] Voskoboynikov A, Liu S S and Lee C P 1999 Phys. Rev. B 59 12514
[6] de Andrada e Silva E A and La Rocca G C 1999 % Phys. Rev. B 59 15583
[7] Voskoboynikov A, Liu S S, Lee C P and Tretyak O 2000 J. Appl. Phys. 87 387
[8] Ara'ujo C M, da Silva A F and Silva E A D E 2002 Phys. Rev. B 65 235305
[9] Ting D Z Y and Cartoix`a X 2002 Appl. Phys. Lett. 81 4198
[10] Koga T, Nitta J, Takayanagi H and Datta S 2002 % Phys. Rev. Lett. 88 126601
[11] Moon J S, Chow D H, Schulman J N, Deelman P, Zinck J J and Ting D Z Y 2004 Appl. Phys. Lett. 85 678
[12] Perel' V I, Tarasenko S A, Yassievich I N, Ganichev S D, Bel'kov V V and Prettl W 2003 Phys. Rev. B 67 201304(R)
[13] Dresselhaus G 1955 Phys. Rev. 100 580
[14] Tarasenko S A, Perel' V I and Yassievich I N 2004 Phys. Rev. Lett. 93 056601
[15] Glazov M M, Alekseev P S, Odnoblyudov M A, Chistyakov V M, Tarasenko S A and Yassievich I N 2005 Phys. Rev. B 71 155313
[16] Yu L and Voskoboynikov O 2005 J. Appl. Phys. 98 023716
[17] Wang L G, Yang W, Chang K and Chan K S 2005 % Phys. Rev. B 72 153314
[18] Li W and Guo Y 2006 Phys. Rev. B 73 205311
[19] Zhang C X, Nie Y H and Liang J Q 2006 Phys. Rev.% B 73 085307
[20] Alekseev P S, Chistyakov V M and Yassievich I N 2006 Semiconductors 40 1402
[21] Ye C Z, Zhang C X, Nie Y H and Liang J Q 2007 % Phys. Rev. B 76 035345
[22] Gong J, Liang X X and Ban S L 2007 J. Appl. Phys. 102 073718
[23] Zhang C X, Wang R, Nie Y H and Liang J Q 2008 % Chin. Phys. B 17 2662
[24] Zhang C X, Nie Y H and Liang J Q 2008 Chin. Phys. B 17 2670
[25] Nguyen T L H, Drouhin H J, Wegrowe J E and Fishman G 2009 Phys. Rev. B 79 165204
[26] Xue H B, Nie Y H, Li Z J and Liang J Q 2010 Physica E 42 1934
[27] Wan F, Jalil M B A and Tan S G 2009 J. Appl. Phys. 105 07C704
[28] Yu L, Huang H C and Voskoboynikov O 2003 Superlattice Microst. 34 547
[29] Gnanasekar K and Navaneethakrishnan K 2006 Eur. Phys. J. B 53 455
[30] Isi'c G, Radovanovi'c J and Milanovi'c V 2007 J. Appl. Phys. 102 123704
[31] Eri'c M, Radovanovi'c J, Milanovi'c V, Ikoni% 'c Z and Indjin D 2008 J. Appl. Phys. 103 083701
[32] Fujita T, Jalil M B A and Tan S G 2008 J. Phys.: Condens. Matter 20 115206
[33] Li W and Reichl L E 1999 Phys. Rev. B 60 15732
[34] Li W and Reichl L E 2000 Phys. Rev. B 62 8269
[35] Shirley J H 1965 Phys. Rev. 138 B979
[36] Holthaus M and Hone D 1993 Phys. Rev. B 47 6499
[37] Fromherz T 1997 Phys. Rev. B 56 4772
[38] Bagwell P F and Lake R K 1992 Phys. Rev. B 46 15329
[39] del Valle C P, Lefebvre R and Atabek O 1999 % Phys. Rev. A 59 3701
[40] Fano U 1961 Phys. Rev. 124 1866
[41] Kobayashi K, Aikawa H, Katsumoto S and Iye Y 2003 Phys. Rev. B 68 235304
[42] Kobayashi K, Aikawa H, Katsumoto S and Iye Y 2002 Phys. Rev. Lett. 88 256806
[1] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[2] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[3] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[4] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[5] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[6] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[7] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[8] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[9] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[10] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[11] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[12] High-sensitivity Bloch surface wave sensor with Fano resonance in grating-coupled multilayer structures
Daohan Ge(葛道晗), Yujie Zhou(周宇杰), Mengcheng Lv(吕梦成), Jiakang Shi(石家康), Abubakar A. Babangida, Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(4): 044102.
[13] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[14] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
[15] Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film
Xiangxian Wang(王向贤), Jian Zhang(张健), Jiankai Zhu(朱剑凯), Zao Yi(易早), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(2): 024210.
No Suggested Reading articles found!