Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 067301    DOI: 10.1088/1674-1056/20/6/067301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Donor-bound electron states in a two-dimensional quantum ring under uniform magnetic field

Jia Bo-Yong(贾博雍), Yu Zhong-Yuan(俞重远), Liu Yu-Min(刘玉敏), Han Li-Hong(韩利红), Yao Wen-Jie(姚文杰), Feng Hao(冯昊), and Ye Han(叶寒)
Key Laboratory of Information Photonics and Optical Communications (Ministry of Education), Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  The electron states in a two-dimensional GaAs/AlGaAs quantum ring are theoretically studied in effective mass approximation. On-centre donor impurity and uniform magnetic field perpendicular to the ring plane are taken into account. The energy spectrum with different angular momentum changes dramatically with the geometry of the ring. The donor impurity reduces the energies with an almost fixed value; however, the magnetic field alters energies in a more complex way. For example, energy levels under magnetic field will cross each other when increasing the inner radius and outer radius of the ring, leading to the fact that the arrangement of energy levels is distinct in certain geometry of the ring. Moreover, energy levels with negative angular momentum exhibit the non-monotonous dependence on the increasing magnetic field.
Keywords:  quantum ring      electron state      donor impurity      uniform magnetic field  
Received:  14 October 2010      Revised:  18 January 2011      Accepted manuscript online: 
PACS:  73.21.-b (Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)  
  71.55.-i (Impurity and defect levels)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA03Z405), the National Natural Science Foundation of China (Grant Nos. 60908028 and 60971068), and the Fundamental Research Funds for the Central Universities (Grant No. BUPT2009RC0411).

Cite this article: 

Jia Bo-Yong(贾博雍), Yu Zhong-Yuan(俞重远), Liu Yu-Min(刘玉敏), Han Li-Hong(韩利红), Yao Wen-Jie(姚文杰), Feng Hao(冯昊), and Ye Han(叶寒) Donor-bound electron states in a two-dimensional quantum ring under uniform magnetic field 2011 Chin. Phys. B 20 067301

[1] García J M, Medeiros-Ribeiro G, Schmidt K, Ngo T, Feng J L, Lorke A, Kotthaus J and Petroff P M 1997 Appl. Phys. Lett. 71 2014
[2] Granados D and García J M 2003 Appl. Phys. Lett. 82 2401
[3] Mano T, Kuroda T, Sanguinetti S, Ochiai T, Tateno T, Kim J, Noda T, Kawabe M, Sakoda K, Kido G and Koguchi N 2005 Nano Lett. 5 425
[4] Timm R, Eisele H, Lenz A, Ivanova L, Balakrishnan G, Huffaker D L and Dähne M 2008 Phys. Rev. Lett. 101 256101
[5] Yu L W, Chen K J, Song J, Xu J, Li W, Li X F, Wang J M and Huang X F 2007 Phys. Rev. Lett. 98 166102
[6] Cui J, He Q, Jiang X M, Fan Y L, Yang X J, Xue F and Jiang Z M 2003 Appl. Phys. Lett. 83 2907
[7] Suárez F, Granados D, Dotor M L and García J M 2004 Nanotechnology 15 S126
[8] Ling H S, Wang S Y, Lee C P and Lo M C 2009 J. Appl. Phys. 105 034504
[9] Abbarchi M, Mastrandrea C A, Vinattieri A, Sanguinetti S, Mano T, Kuroda T, Koguchi N, Sakoda K and Gurioli M 2009 Phys. Rev. B 79 085308
[10] Sanguinetti S, Abbarchi M, Vinattieri A, Zamfirescu M, Gurioli M, Mano T, Kuroda T and Koguchi N 2008 Phys. Rev. B 77 125404
[11] Nazzal A Y, Fu H X and Wang L W 2005 J. Appl. Phys. 98 083703
[12] Kuroda T, Mano T, Tateno T, Sanguinetti S, Noda T, Kuroda K, Sakoda K, Kido G and Koguchi N 2006 Physica E 32 46
[13] Kuroda T, Mano T, Ochiai T, Sanguinetti S, Sakoda K, Kido G and Koguchi N 2005 Phys. Rev. B 72 205301
[14] Wu H 2010 Acta Phys. Sin. 59 8843 (in Chinese)
[15] Liu Y M, Yu Z Y, Jia B Y, Xu Z H, Yao W J, Chen Z H, Lu P F and Han L H 2009 Chin. Phys. B 18 4667
[16] Tadi'c M and Peeters F M 2009 Phys. Rev. B 79 153305
[17] Jia B Y, Yu Z Y and Liu Y M 2009 Modelling Simul. Mater. Sci. Eng. 17 035004
[18] Feng S L, Wang C D and Yang F H 2008 Chin. Phys. B 17 3054
[19] Chwiej T and Szafran B 2008 Phys. Rev. B 78 245306
[20] Szafran B, Peeters F M and Bednarek S 2007 Phys. Rev. B 75 115303
[21] Xia J B and Li S S 2002 Phys. Rev. B 66 035311
[22] Culchac F J, Montenegro N P, Granada J C and Latgé A 2008 Microelectronics J. 39 402
[23] Planelles J and Climente J I 2005 Eur. Phys. J. B 48 65
[24] Keyser U F, Borck S, Haug R J, Bichler M, Abstreiter G and Wegscheider W 2002 Semicond. Sci. Technol. 17 L22
[25] Buchholz S S, Fischer S F, Kunze U, Reuter D and Wieck A D 2009 Appl. Phys. Lett. 94 022107
[26] Amado M, Lima R P A, Santander C G and Adame F D 2007 Phys. Rev. B 76 073312
[27] Xie W F 2009 Phys. Status Solidi 246 1313
[28] Levinshtein M, Rumyantsev S and Shur M 1999 Handbook Series on Semiconductor Parameters (Singapore: World Scientific)
[1] Multi-bubble motion behavior of uniform magnetic field based on phase field model
Chang-Sheng Zhu(朱昶胜), Zhen Hu(胡震), Kai-Ming Wang(王凯明). Chin. Phys. B, 2020, 29(3): 034702.
[2] Novel transit-time oscillator (TTO) combining advantages of radial-line and axial TTO
Wei-Li Xu(徐伟力), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Li-Li Song(宋莉莉), Bing-Fang Deng(邓秉方), Ouzhixiong Dai(戴欧志雄), Xing-Jun Ge(葛行军). Chin. Phys. B, 2019, 28(8): 085201.
[3] Spin transport in a chain of polygonal quantum rings with Dresselhaus spin-orbit coupling
Han-Zhao Tang(唐翰昭), Xiao-Teng Yao(要晓腾), Jian-Jun Liu(刘建军). Chin. Phys. B, 2017, 26(11): 117203.
[4] Electron states and electron Raman scattering in semiconductor double cylindrical quantum well wire
M Munguía-Rodríguez, Ri Betancourt-Riera, Re Betancourt-Riera, R Riera, J M Nieto Jalil. Chin. Phys. B, 2016, 25(11): 117302.
[5] Spin transport properties of a Dresselhaus-polygonal quantum ring
Tang Han-Zhao (唐翰昭), Zhai Li-Xue (翟利学), Shen Man (沈曼), Liu Jian-Jun (刘建军). Chin. Phys. B, 2015, 24(3): 030303.
[6] Two-electron quantum ring in short pulses
Poonam Silotia, Rakesh Kumar Meena, Vinod Prasad. Chin. Phys. B, 2015, 24(2): 020303.
[7] Electron Raman scattering in semiconductor quantum well wire of cylindrical ring geometry
Re. Betancourt-Riera, Ri. Betancourt-Riera, J. M. Nieto Jalil, R. Riera. Chin. Phys. B, 2015, 24(11): 117302.
[8] Kinetic Monte Carlo simulations of optimization of self-assembly quantum rings growth strategy based on substrate engineering
Liu Jian-Tao (刘建涛), Feng Hao (冯昊), Yu Zhong-Yuan (俞重远), Liu Yu-Min (刘玉敏), Shi Qiang (石强), Song Xin (宋鑫), Zhang Wen (张文), Peng Yi-Wei (彭益炜). Chin. Phys. B, 2013, 22(4): 046801.
[9] Transport properties in multi-terminal regular polygonal quantum ring with Rashba spin-orbit coupling
Tang Han-Zhao (唐翰昭), Zhai Li-Xue (翟利学), Liu Jian-Jun (刘建军). Chin. Phys. B, 2012, 21(12): 120303.
[10] Size and temperature effects on electric properties of CdTe/ZnTe quantum rings
Woo-Pyo Hong and Seoung-Hwan Park . Chin. Phys. B, 2011, 20(9): 098502.
[11] Electronic transport through a quantum ring coupled to ferromagnetic leads
Chi Feng(迟锋), Sun Lian-Liang(孙连亮), Huang Ling(黄玲) and Zhao Jia(赵佳) . Chin. Phys. B, 2011, 20(1): 017303.
[12] Atomic coherent states as energy eigenstates of a Hamiltonian describing a two-dimensional anisotropic harmonic potential in a uniform magnetic field
Meng Xiang-Guo(孟祥国), Wang Ji-Suo(王继锁), and Liang Bao-Long(梁宝龙). Chin. Phys. B, 2010, 19(12): 124205.
[13] Pairwise thermal entanglement in a three-qubit Heisenberg XX model with a nonuniform magnetic field and Dzyaloshinski–Moriya interaction
Ren Jin-Zhong(任金忠), Shao Xiao-Qiang(邵晓强), Zhang Shou(张寿), and Yeon Kyu-Hwang. Chin. Phys. B, 2010, 19(10): 100307.
[14] Strain distributions and electronic structure of three-dimensional InAs/GaAs quantum rings
Liu Yu-Min(刘玉敏),Yu Zhong-Yuan(俞重远),Jia Bo-Yong(贾博雍), Xu Zi-Huan(徐子欢),Yao Wen-Jie(姚文杰),Chen Zhi-Hui(陈智辉), Lu Peng-Fei(芦鹏飞), and Han Li-Hong(韩利红) . Chin. Phys. B, 2009, 18(11): 4667-4675.
[15] Approximate calculation of electronic energy levels of axially symmetric quantum dot and quantum ring by using energy dependent effective mass
Liu Yu-Min(刘玉敏), Yu Zhong-Yuan(俞重远), and Ren Xiao-Min(任晓敏). Chin. Phys. B, 2009, 18(1): 9-15.
No Suggested Reading articles found!