CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Spin-dependent Breit–Wigner and Fano resonances in photon-assisted electron transport through a semiconductor heterostructure |
Hu Li-Yun(胡丽云) and Zhou Bin(周斌)† |
Department of Physics, Hubei University, Wuhan 430062, China |
|
|
Abstract We theoretically investigate the electron transmission through a seven-layer semiconductor heterostructure with the Dresselhaus spin-orbit coupling under two applied oscillating fields. Numerical results show that both of the spin-dependent symmetric Breit-Wigner and the asymmetric Fano resonances appear and that the properties of these two types of resonance peaks are dependent on the amplitude and the relative phases of the two applied oscillating fields. The modulation of the spin-polarization efficiency of transmitted electrons by the relative phase is also discussed.
|
Received: 10 August 2010
Revised: 25 February 2011
Accepted manuscript online:
|
PACS:
|
72.25.Dc
|
(Spin polarized transport in semiconductors)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
85.75.Mm
|
(Spin polarized resonant tunnel junctions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10974046), Natural Science Foundation of Hubei Province of China (Grant No. 2009CDB360), and the Key Project of Education Department of Hubei Province of China (Grant No. D20101004). |
Cite this article:
Hu Li-Yun(胡丽云) and Zhou Bin(周斌) Spin-dependent Breit–Wigner and Fano resonances in photon-assisted electron transport through a semiconductor heterostructure 2011 Chin. Phys. B 20 067201
|
[1] |
Rashba E I 1960 Sov. Phys. Solid State 2 1109
|
[2] |
Yang W and Chang K 2006 Phys. Rev. B 74 193314
|
[3] |
Li J, Yang W and Chang K 2009 Phys. Rev. B 80 035303
|
[4] |
Voskoboynikov A, Liu S S and Lee C P 1998 Phys. Rev. B 58 15397
|
[5] |
Voskoboynikov A, Liu S S and Lee C P 1999 Phys. Rev. B 59 12514
|
[6] |
de Andrada e Silva E A and La Rocca G C 1999 % Phys. Rev. B 59 15583
|
[7] |
Voskoboynikov A, Liu S S, Lee C P and Tretyak O 2000 J. Appl. Phys. 87 387
|
[8] |
Ara'ujo C M, da Silva A F and Silva E A D E 2002 Phys. Rev. B 65 235305
|
[9] |
Ting D Z Y and Cartoix`a X 2002 Appl. Phys. Lett. 81 4198
|
[10] |
Koga T, Nitta J, Takayanagi H and Datta S 2002 % Phys. Rev. Lett. 88 126601
|
[11] |
Moon J S, Chow D H, Schulman J N, Deelman P, Zinck J J and Ting D Z Y 2004 Appl. Phys. Lett. 85 678
|
[12] |
Perel' V I, Tarasenko S A, Yassievich I N, Ganichev S D, Bel'kov V V and Prettl W 2003 Phys. Rev. B 67 201304(R)
|
[13] |
Dresselhaus G 1955 Phys. Rev. 100 580
|
[14] |
Tarasenko S A, Perel' V I and Yassievich I N 2004 Phys. Rev. Lett. 93 056601
|
[15] |
Glazov M M, Alekseev P S, Odnoblyudov M A, Chistyakov V M, Tarasenko S A and Yassievich I N 2005 Phys. Rev. B 71 155313
|
[16] |
Yu L and Voskoboynikov O 2005 J. Appl. Phys. 98 023716
|
[17] |
Wang L G, Yang W, Chang K and Chan K S 2005 % Phys. Rev. B 72 153314
|
[18] |
Li W and Guo Y 2006 Phys. Rev. B 73 205311
|
[19] |
Zhang C X, Nie Y H and Liang J Q 2006 Phys. Rev.% B 73 085307
|
[20] |
Alekseev P S, Chistyakov V M and Yassievich I N 2006 Semiconductors 40 1402
|
[21] |
Ye C Z, Zhang C X, Nie Y H and Liang J Q 2007 % Phys. Rev. B 76 035345
|
[22] |
Gong J, Liang X X and Ban S L 2007 J. Appl. Phys. 102 073718
|
[23] |
Zhang C X, Wang R, Nie Y H and Liang J Q 2008 % Chin. Phys. B 17 2662
|
[24] |
Zhang C X, Nie Y H and Liang J Q 2008 Chin. Phys. B 17 2670
|
[25] |
Nguyen T L H, Drouhin H J, Wegrowe J E and Fishman G 2009 Phys. Rev. B 79 165204
|
[26] |
Xue H B, Nie Y H, Li Z J and Liang J Q 2010 Physica E 42 1934
|
[27] |
Wan F, Jalil M B A and Tan S G 2009 J. Appl. Phys. 105 07C704
|
[28] |
Yu L, Huang H C and Voskoboynikov O 2003 Superlattice Microst. 34 547
|
[29] |
Gnanasekar K and Navaneethakrishnan K 2006 Eur. Phys. J. B 53 455
|
[30] |
Isi'c G, Radovanovi'c J and Milanovi'c V 2007 J. Appl. Phys. 102 123704
|
[31] |
Eri'c M, Radovanovi'c J, Milanovi'c V, Ikoni% 'c Z and Indjin D 2008 J. Appl. Phys. 103 083701
|
[32] |
Fujita T, Jalil M B A and Tan S G 2008 J. Phys.: Condens. Matter 20 115206
|
[33] |
Li W and Reichl L E 1999 Phys. Rev. B 60 15732
|
[34] |
Li W and Reichl L E 2000 Phys. Rev. B 62 8269
|
[35] |
Shirley J H 1965 Phys. Rev. 138 B979
|
[36] |
Holthaus M and Hone D 1993 Phys. Rev. B 47 6499
|
[37] |
Fromherz T 1997 Phys. Rev. B 56 4772
|
[38] |
Bagwell P F and Lake R K 1992 Phys. Rev. B 46 15329
|
[39] |
del Valle C P, Lefebvre R and Atabek O 1999 % Phys. Rev. A 59 3701
|
[40] |
Fano U 1961 Phys. Rev. 124 1866
|
[41] |
Kobayashi K, Aikawa H, Katsumoto S and Iye Y 2003 Phys. Rev. B 68 235304
|
[42] |
Kobayashi K, Aikawa H, Katsumoto S and Iye Y 2002 Phys. Rev. Lett. 88 256806
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|