CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Sb complexes and Zn interstitials in Sb-implanted ZnO epitaxial films |
Liu Yao-Ping (刘尧平)a, Ying Min-Ju (英敏菊)b, Mei Zeng-Xia (梅增霞)a, Li Jun-Qiang (李俊强)a, Du Xiao-Long (杜小龙)a, A. Yu. Kuznetsovc |
a Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; b College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China; c Department of Physics, University of Oslo, P.O. Box 1048 Blindern, NO-0316 Oslo, Norway |
|
|
Abstract In the present work, post-annealing is adopted to investigate the formation and the correlation of Sb complexes and Zn interstitials in Sb-ion implanted ZnO films, by using Raman scattering technique and electrical characterizations. The damage of Zn sublattice, produced by ion bombardment process is discerned from the unrecovered E2 (L) peak in annealed high Sb+ dose implanted samples. It is suggested that the Zn sublattice may be strongly affected by the introduction of Sb dopant because of the formation of SbZn-2VZn complex acceptor. The appearance of a new peak at 510 cm-1 in the annealed high dose Sb+ implanted samples is speculated to result from (Zn interstitials-O interstitials) Zni-Oi complex, which is in a good accordance with the electrical measurement. The p-type ZnO is difficult to obtain from the Sb + implantation, however, which can be realized by in-situ Sb doping with proper growth conditions instead.
|
Received: 03 December 2010
Revised: 18 January 2011
Accepted manuscript online:
|
PACS:
|
61.72.U-
|
(Doping and impurity implantation)
|
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
78.30.-j
|
(Infrared and Raman spectra)
|
|
81.15.Hi
|
(Molecular, atomic, ion, and chemical beam epitaxy)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61076007 and 50532090), the National Basic
Research Program of China (Grant Nos. 2007CB936203, 2009CB929400, 2009AA033101, and 2011CB302002), the Knowledge
Innovation Project of the Chinese Academy of Sciences, and the Research Council of Norway through the FRINAT "Understanding
ZnO" Project. |
Cite this article:
Liu Yao-Ping (刘尧平), Ying Min-Ju (英敏菊), Mei Zeng-Xia (梅增霞), Li Jun-Qiang (李俊强), Du Xiao-Long (杜小龙), A. Yu. Kuznetsov Sb complexes and Zn interstitials in Sb-implanted ZnO epitaxial films 2011 Chin. Phys. B 20 066104
|
[1] |
Tang Z K, Wong G K L, Yu P, Kawasaki M, Ohtomo A, Koinuma H and Segawa Y 1998 Appl. Phys. Lett. 72 3270
|
[2] |
Bagnall D M, Chen Y F, Zhu Z, Tao T, Koyama S, Shen M Y and Goto T 1997 Appl. Phys. Lett. 70 2230
|
[3] |
Reynolds D C, Look D C, Jogai B, Litton C W, Cantwell G and Harsch W C 1999 Phys. Rev. B 60 2340
|
[4] |
Neuvonen P T, Vines L, Kuznetsov A Yu, Svensson B G, Du X L, Tuomisto F and Hallén A 2009 Appl. Phys. Lett. 95 242111
|
[5] |
Dunlop L, Kursumovic A and MacManus-Driscoll J L 2008 Appl. Phys. Lett. 93 172111
|
[6] |
Wardle M G, Goss J P and Briddon P R 2005 Phys. Rev. B 71 155205
|
[7] |
Janotti A and van de Walle C G 2007 Phys. Rev. B 76 165202
|
[8] |
Park C H, Zhang S B and Wei S H 2002 Phys. Rev. B 66 073202
|
[9] |
Mandalapu L J, Yang Z, Xiu F X, Zhao D T and Liu J L 2006 Appl. Phys. Lett. 88 092103
|
[10] |
Chu S, Olmedo M, Yang Z, Kong J Y and Liu J L 2008 Appl. Phys. Lett. 93 183106
|
[11] |
Limpijumnong S, Zhang S B, Wei S H and Park C H 2004 Phys. Rev. Lett. 92 155504
|
[12] |
Wahl U, Correia J G, Mendoncca T and Decoster S 2009 Appl. Phys. Lett. 94 261901
|
[13] |
Gu Q L, Ling C C, Brauer G, Anwand W, Skorupa W, Hsu Y F, Djurisic A B, Zhu C Y, Fung S and Lu L W 2008 Appl. Phys. Lett. 92 222109
|
[14] |
Braunstein G, Muraviev A, Saxena H, Dhere N, Richter V and Kalish R 2005 Appl. Phys. Lett. 87 192103
|
[15] |
Wang X N, Wang Y, Mei Z X, Dong J, Zeng Z Q, Yuan H T, Zhang T C, Du X L, Jia J F, Xue Q K, Zhang X N, Zhang Z, Li Z F and Lu W 2007 Appl. Phys. Lett. 90 151912
|
[16] |
Guo Y, Liu Y P, Li J Q, Zhang S L, Mei Z X and Du X L 2010 Chin. Phys. Lett. 27 067203
|
[17] |
özgür ü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J and Morkoc H 2005 J. Appl. Phys. 98 041301
|
[18] |
Ke X W, Shan F K, Park Y S, Wang Y J, Zhang W Z, Kang T W and Fu D J 2007 Surf. Coat. Technol. 201 6797
|
[19] |
Artus L, Cusco R, Alarcon-Llado E, Gonzalez-Diaz G, Martil I, Jimenez J, Wang B and Callahan M 2007 Appl. Phys. Lett. 90 181911
|
[20] |
Wang J B, Zhong H M, Li Z F and Lu W 2006 Appl. Phys. Lett. 88 101913
|
[21] |
Cusco R, Jimenez J, Wang B and Callahan M J 2007 Phys. Rev. B 75 165202
|
[22] |
Bundesmann C, Ashkenov N, Schubert M, Spemann D, Butz T, Kaidashev E M, Lorenz M and Grundmann M 2003 Appl. Phys. Lett. 83 1974
|
[23] |
Manj'on F J, Mar'hi B, Serrano J and Romero A H 2005 J. Appl. Phys. 97 053516
|
[24] |
Friedrich F, Gluba M A and Nicke N H 2009 Appl. Phys. Lett. 95 141903
|
[25] |
Look D C, Hemsky J W and Sizelove J R 1999 Phys. Rev. Lett. 82 2552
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|