Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源)1, Zong-Kai Feng(冯棕楷)1, Ling Jiang(蒋领)1, Jie Song(宋杰)1, Xiao-Xun He(何晓珣)1, Li-Ming Chen(陈黎明)1, Qing Liao(廖庆)1, Jiao Wang(王姣)2, and Bing-Sheng Li(李炳生)1,†
1 State Key Laboratory for Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China; 2 Sichuan Vocational and Technical College of Communications, Chengdu 611130, China
Abstract Chemical disorder on the surface and lattice strain in GaN implanted by Fe10+ ions are investigated. In this study, 3-MeV Fe10+ ions fluence ranges from 1×1013 ions/cm2 to 5×1015 ions/cm2 at room temperature. X-ray photoelectron spectroscopy, high-resolution x-ray diffraction, and high-resolution transmission electron microscopy were used to characterize lattice disorder. The transition of Ga-N bonds to oxynitride bonding is caused by ion sputtering. The change of tensile strain out-of-plane with fluence was measured. Lattice disorder due to the formation of stacking faults prefers to occur on the basal plane.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12075194) and the Fund of Collage Student Innovation and Entrepreneurship Training Program (Grant No. S202010619053). We appreciate the staff in the 320-kV high-voltage platform in the Institute of Modern Physics, Chinese Academy of Sciences for their assistance in ion implantation experiment.
Corresponding Authors:
Bing-Sheng Li
E-mail: libingshengmvp@163.com
Cite this article:
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生) Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions 2022 Chin. Phys. B 31 046103
[1] Pearton S J, Zolper J C, Shul R J and Ren F 1999 J. Appl. Phys. 86 1 [2] Sharma S and Kumar V 2021 Microprecessors and Microsystems83 103952 [3] Mulligan P, Wang J H and Cao L 2013 Nucl. Instrum. Methods Phys. Res. A719 13 [4] Bouziani I, Benhouria Y, Essaoudi I, Ainane A and Ahuja R 2018 Physica A512 1249 [5] Basha S M, Ramasubramanian S, Rajagopalan M, Kumar J, Kang T W and Ganapathi N 2011 J. Crystal Growth318 432 [6] Kozubal M A, Karolina P, Andrzej T, Renata K, Iwona S and Eliana K 2020 Mater. Sci. Semicond. Process. 122 105491 [7] Sheu J K, Chen P C, Yeh Y H, Kuo S H, Lee M L, Liao P H and Lai W C 2016 Acta Mater. 108 17 [8] Yoshino M, Sugamata K, Ikeda K, Nishimura T, Kuriyama K and Nakamura T 2019 Nucl. Instrum. Methods Phys. Res. B449 49 [9] Zhao S R, Shi Y, Li H J and He Q Y 2010 Nucl. Instrum. Methods Phys. Res. B268 1435 [10] Ma H, Wang X D, Chen J F, Gao X D, Zheng S N, Mao H M, Wang D, Zeng X H and Xu K 2021 Superlattices and Microstructures156 106974 [11] Wang K, Martin R W, Nogales E, Katchkanov V, Donnell K P, Hernadez S, Lorenz K, Alves E, Ruffenech S and Briot O 2006 Opt. Mater. 28 797 [12] Yi A L, Zheng Y, Huang H, Lin J J, Yan Y Q, You T G, Huang K, Zhang S B, Shen C, Zhou M, Huang W, Zhang J X, Zhou S Q, Ou H Y and Ou X 2020 Opt. Mater. 107 109990 [13] Yan F F, Yi A L, Wang J F, Li Q, Yu P, Zhang J X, Gali A, Wang Y, Xu J S, Ou X, Li C F and Guo G C 2020 npj Quantum Information6 38 [14] Daghbouj N, Lin J J, Sen H S, Callisti M, Li B S, Karlik M, Polcar T, Shen Z H, Zhou M, You T G and Ou X 2021 Appl. Surf. Sci. 552 149426 [15] Yang Z, Zou Z P, Zhang Z Y, Xin Y B and Wang T 2021 Materials14 5107 [16] Li B S and Wang Z G 2015 J. Phys. D:Appl. Phys. 48 225101 [17] Kubota K, Nishimura T, Kuriyama K and Nakamura T 2019 Nucl. Instrum. Methods Phys. Res. B451 70 [18] Li B S, Peng D P, Li J H, Kang L, Zhang T M, Zhang Z X, Jin S X, Cao X Z, Liu J H, Wu L, Fang Z Q, Zhou C L, Yang Z and Krsjak V 2021 Vacuum184 109909 [19] Gutierrez C A H, Kudriavtsev Y, Cardona D, Hernandez A G and Anzueto J L C 2021 Opt. Mater. 111 110541 [20] Kavouras P, Komninou P and Karakostas T 2007 Thin Solid Films515 3011 [21] Mendes P, Lorenz K, Alves E, Schwaiger S, Scholz F and Magalhaes S 2019 Mater. Sci. Semicond. Proces. 98 95 [22] Kucheyev S O, Williams J S and Pearton S J 2001 Mater. Sci. Eng. R:Resports33 51 [23] Ronning C, Carlson E P and Davis R F 2001 Phys. Rep. 351 349 [24] Lorenz K, Wendler E, Cubero A R, Catarino N, Chauvat M P, Schwaiger S, Scholz F, Alves E and Ruterana P 2017 Acta Mater. 123 177 [25] Li B S, Wang Z G and Zhang H P 2015 Thin Solid Films590 64 [26] Li B S, Liu H P, Xu L J, Wang J, Song J, Peng D P, Li J H, Zhao F Q, Kang L, Zhang T M, Tang H X and Xiong An L 2020 Appl. Surf. Sci. 499 143911 [27] Li B S, Liu H P, Lu X R, Kang L, Sheng Y B and Xiong An L 2019 Appl. Surf. Sci. 486 15 [28] Gloux F and Ruterana P 2006 Opt. Mater. 28 763 [29] Han Y, Peng J X, Li B S, Wang Z G, Wei K F, Shen T L, Sun J R, Zhang L M, Yao C F, Gao N, Gao X, Pang L L, Zhu Y B, Chang H L, Cui M H, Luo P, Sheng Y B, Zhang H P and He W H 2017 Nucl. Instrum. Methods in Phys. Res. B406 543 [30] Lorenz K, Wahl U, Alves E, Wojtowicz T, Ruterana P, Ruffenach S and Briot O 2004 Superlattices and Microstructures36 737 [31] Han L H, Zhang C H, Zhang L Q, Yang Y T, Song Y and Sun Y M 2010 Acta Phys. Sin. 59 4584 (in Chinese) [32] Zhang L Q, Zhang C H, Xu C L, Li J J, Yang Y T, Ma Y Z, Li J Y, Liu H P, Ding Z N, Yan T X and Song Y 2017 Nucl. Instrum. Methods Phys. Res. B406 571 [33] Jin S X, Ma H L, Lu E Y, Zhou L, Zhang Q L, Fan P, Yan Q Z, Yuan D Q, Cao X Z and Wang B Y 2021 Materials Today Energy20 100687 [34] Jin P, Shen T L, Cui M H, Zhu Y B, Li B S, Zhang T M, Li J Y, Jin S X, Lu E Y, Cao X Z and Wang Z G 2019 J. Nucl. Mater. 520 131 [35] Zhang L M, Zhang C H, Zhang L Q, Jia X J, Han L H, Xu C L and Jin Y F 2011 Nucl. Instrum. Methods Phys. Res. B269 1063 [36] Li B S, Liu H P, Kang L, Zhang T M, Xu L J and Xiong A L 2019 J. Eur. Cera. Soc. 39 4307 [37] Ziegler J F, Zeiger M D and Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. B268 1818 [38] G.S. Was, Taller S, Jiao Z, Monterrosa A M, Woodley D, Jennings D, Kubley T, Naab F, Toader O and Uberseder E 2017 Nucl. Instrum. Methods Phys. Res. B412 58 [39] Prabhakaran K, Andersson T G and Nozawa K 1996 Appl. Phys. Lett. 69 3212 [40] Wolter S D, Delucca J M, Sohney S E, Kern R S and Kuo C P 2000 Thin Solid Films371 153 [41] Zhang L M, Jiang W L, Dissanayake A, Peng J X, Ai W S, Zhang J D, Zhu Z H, Wang T S and Shutthanandan V 2016 J. Appl. Phys. 119 245704 [42] Harafuji K and Kawamura K 2010 Jpn. J. Appl. Phys. 47 1536 [43] Daghbouj N, Li B S, Callisti M, Sen H S, Lin J, Ou X, Karlik K and Polcar T 2020 Acta Mater. 188 609
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.