Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 038102    DOI: 10.1088/1674-1056/ac1efe

Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon

Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非)
School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  The measuring of the depth profile and electrical activity of implantation impurity in the top nanometer range of silicon encounters various difficulties and limitations, though it is known to be critical in fabrication of silicon complementary metal-oxide-semiconductor (CMOS) devices. In the present work, SRIM program and photocarrier radiometry (PCR) are employed to monitor the boron implantation in industrial-grade silicon in an ultra-low implantation energy range from 0.5 keV to 5 keV. The differential PCR technique, which is improved by greatly shortening the measurement time through the simplification of reference sample, is used to investigate the effects of implantation energy on the frequency behavior of the PCR signal for ultra-shallow junction. The transport parameters and thickness of shallow junction, extracted via multi-parameter fitting the dependence of differential PCR signal on modulation frequency to the corresponding theoretical model, well explain the energy dependence of PCR signal and further quantitatively characterize the recovery degree of structure damage induced by ion implantation and the electrical activation degree of impurities. The monitoring of nm-level thickness and electronic properties exhibits high sensitivity and apparent monotonicity over the industrially relevant implantation energy range. The depth profiles of implantation boron in silicon with the typical electrical damage threshold (YED) of 5.3×1015 cm-3 are evaluated by the SRIM program, and the determined thickness values are consistent well with those extracted by the differential PCR. It is demonstrated that the SRIM and the PCR are both effective tools to characterize ultra-low energy ion implantation in silicon.
Keywords:  ultra-low energy ion implantation      differential nonlinear photocarrier radiometry      junction depth      electronic transport parameters  
Received:  27 May 2021      Revised:  09 August 2021      Accepted manuscript online:  19 August 2021
PACS:  81.70.Fy (Nondestructive testing: optical methods)  
  68.55.Ln (Defects and impurities: doping, implantation, distribution, concentration, etc.)  
  73.50.Gr (Charge carriers: generation, recombination, lifetime, trapping, mean free paths)  
  78.56.Cd (Photocarrier radiometry)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61771103, 61704023, and 61601092).
Corresponding Authors:  Bin-Cheng Li     E-mail:

Cite this article: 

Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非) Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon 2022 Chin. Phys. B 31 038102

[1] Kalra P, Majhi P, Tseng H H, Larson L, Jammy R and King Liu T J 2008 The 17th International Conference on Ion Implantation Technology (IIT2008), June 8-13, 2008, Monterey, CA, USA, p. 55
[2] Fisicaro G, Italia M, Privitera V, Piccitto G, Huet K, Venturini J and Magna A L 2011 J. Appl. Phys. 109 113513
[3] Jones E C and Ishida E 1998 Mater. Sci. Eng. R 24 1
[4] Huang Q P, Li B C and Ren S D 2013 Sci. China-Phys. Mech. Astron. 56 1294
[5] Napolitani E and Impellizzeri G 2015 Semiconductors and Semimetals 91 93
[6] Polley C M, Clarke W R, Miwa J A, Scappucci G, Wells J W, Jaeger D L, Bischof M R, Reidy R F, Gorman B P and Simmons M 2013 ACS Nano 7 5499
[7] Chan T K, Koh S Y, Fang V, Markwitz A and Osipowicz T 2014 Appl. Surf. Sci. 314 322
[8] Dennard R H, Gaensslen F H, Yu H-N, Rideout V L, Bassous E and LeBlanc A R 1974 IEEE J. Solid-State Circuits 5 256
[9] Shaughnessy D, Li B C, Mandelis A and Batista J 2004 Appl. Phys. Lett. 84 5219
[10] Lioudakis E, Christofides C and Othonos A 2006 J. Appl. Phys. 99 123514
[11] Fiory A T 2002 J. Elec. Mater. 31 981
[12] Benton J L, Libertino S, Kringhoj P, Eaglesham D J, Poate M and Coffa S 1997 J. Appl. Phys. 82 120
[13] Wang Y N and Ma T C 1997 Semiconductors and Semimetals 45 31
[14] Sharma S, Aderhold W, Sharma K R, and Mayur A J 2014 20th International Conference on Ion Implantation Technology (IIT), June 26-July 4, 2014, Portland, OR, USA
[15] Ziegler J F, Biersack J P and Littmark U 1985 The Stopping and Range of Ions in Solids (Tarrytown, NY:Pergamon Press); Ziegler J F[2006-]
[16] Wang C H, Mandelis A and Tolev J 2007 J. Appl. Phys. 101 123109
[17] Salnick A and Opsal J 2002 J. Appl. Phys. 91 2874
[18] Prussin S, Margolese D I and Tauber R N 1983 J. Appl. Phys. 54 2316
[19] Salnick A and Opsal J 2003 Rev. Sci. Instrum. 74 545
[20] Wilbertz C H, Bhatia K L, Kraetschmer W and Kalbitzer S 1989 Mater. Sci. Eng. B 2 325
[21] Lei X K, Li B C, Sun Q M, Wang J and Gao C M 2019 AIP Adv. 9 035125
[22] Lei X K, Li B C, Sun Q M, Wang J and Gao C M 2020 J. Appl. Phys. 127 035701
[23] Palik E D 1998 Handbook of Optical Constants of Solids (San Diego:Academic)
[24] Huang Q P, Li B C and Gao W D 2012 Int. J. Thermophys. 33 2082
[25] Wang Q, Li B C, Ren S D and Wang Q 2015 Int. J. Thermophys. 36 1173
[26] Li B C, Shaughnessy D and Mandelis A 2005 Rev. Sci. Instrum. 76 063703
[27] Istratov A A, Hieslmair H and Weber E R 2000 Appl. Phys. A:Mater. Sci. Process. 70 489
[28] Schroder D K 1997 IEEE Trans. Electron. Dev. 44 160
[29] Lauer K, Laades A, Ubensee H and Lawerenz A 2008 J. Appl. Phys. 104 104503
[30] Liu X M, Li B C and Huang Q P 2010 Chin. Phys. B 19 097201
[31] Ng W L, Lourenco M A, Gwilliam R M, Ledain S, Shao G and Homewood K P 2001 Nature 410 192
[32] Stowe D J, Galloway S A, Senkader S, Mallik K, Falster R J and Wilshaw P R 2003 Physica B 340-342 710
[33] Milosavljevic M, Shao G, Lourenco M A, Gwilliam R M and Homewood K P 2005 J. Appl. Phys. 97 073512
[34] Guidotti D, Batchelder J S, Finkel A and Van Vechten J A 1988 Phys. Rev. B 38 1569
[35] Sun Q M, Melnikov A, Wang J and Mandelis A 2018 J. Phys. D:Appl. Phys. 51 15
[36] Lei X K, Li B C, Sun Q M, Wang J, Gao C M and Wang Y F 2020 Infrared Phys. Technol. 111 103533
[1] Influence of structural parameters on the immunity of short-channel effects in grooved-gate nMOSFET
Tong Jian-Nong (童建农), Zou Xue-Cheng (邹雪城), Shen Xu-Bang (沈绪榜). Chin. Phys. B, 2004, 13(11): 1815-1819.
No Suggested Reading articles found!