Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 114203    DOI: 10.1088/1674-1056/ac7c02
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Optical properties of He+-implanted and diamond blade-diced terbium gallium garnet crystal planar and ridge waveguides

Jia-Li You(游佳丽)1, Yu-Song Wang(王雨松)1, Tong Wang(王彤)1, Li-Li Fu(付丽丽)1, Qing-Yang Yue(岳庆炀)2, Xiang-Fu Wang(王祥夫)1, Rui-Lin Zheng(郑锐林)1, and Chun-Xiao Liu(刘春晓)1,3,†
1 College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 Shandong Provincial Engineering and Technical Center of Light Manipulations&Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China;
3 Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing 210023, China
Abstract  Terbium gallium garnet (Tb3Ga5O12, TGG) crystal can be used to fabricate various magneto-optical devices due to its optimal Faraday effect. In this work, 400-keV He+ ions with a fluence of 6.0×1016 ions/cm2 are irradiated into the TGG crystal for the planar waveguide formation. The precise diamond blade dicing with a rotation speed of 2×104 rpm and a cutting velocity of 0.1 mm/s is performed on the He+-implanted TGG planar waveguide for the ridge structure. The dark-mode spectrum of the He+-implanted TGG planar waveguide is measured by the prism-coupling method, thereby obtaining the relationship between the reflected light intensity and the effective refractive index. The refractive index profile of the planar waveguide is reconstructed by the reflectivity calculation method. The near-field light intensity distribution of the planar waveguide and the ridge waveguide are recorded by the end-face coupling method. The He+-implanted and diamond blade-diced TGG crystal planar and ridge waveguides are promising candidates for integrated magneto-optical devices.
Keywords:  TGG crystal      optical waveguide      ion implantation      precise diamond blade dicing  
Received:  04 March 2022      Revised:  21 June 2022      Accepted manuscript online:  27 June 2022
PACS:  42.79.Gn (Optical waveguides and couplers)  
  61.80.Jh (Ion radiation effects)  
Fund: Project supported by the Postgraduate Research and Practice Innovation Program of Jiangsu Province, China (Grant No. SJCX21 0274), the National Natural Science Foundation of China (Grant Nos. 11405041 and 61905119), the Scientific Research Foundation for Youths Supported by Jiangxi Province Science Foundation, China (Grant No. 20192BAB217015), and the University Natural Science Research Project of Jiangsu Province, China (Grant No. 19KJB140013).
Corresponding Authors:  Chun-Xiao Liu     E-mail:  chunxiaoliu@njupt.edu.cn

Cite this article: 

Jia-Li You(游佳丽), Yu-Song Wang(王雨松), Tong Wang(王彤), Li-Li Fu(付丽丽), Qing-Yang Yue(岳庆炀), Xiang-Fu Wang(王祥夫), Rui-Lin Zheng(郑锐林), and Chun-Xiao Liu(刘春晓) Optical properties of He+-implanted and diamond blade-diced terbium gallium garnet crystal planar and ridge waveguides 2022 Chin. Phys. B 31 114203

[1] Ríos C, Stegmaier M, Hosseini P, Wang D, Scherer T, Wright C D, Bhaskaran H and Pernice W H P 2015 Nat. Photon. 9 725
[2] Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P and Lon?ar M 2018 Nature 562 101
[3] Ashok N, Lee Y L and Shin W J 2017 Jpn. J. Appl. Phys. 56 032501
[4] Tervonen A, West B R and Honkanen S 2011 Opt. Eng. 50 071107
[5] He S, Yang Q X, Zhang B, Ren Y Y, Liu H L, Wu P F, Yao Y C and Chen F 2020 Results Phys. 18 103307
[6] Jia C L, Li S and Song X X 2017 Appl. Phys. B 123 206
[7] Kip D 1998 Appl. Phys. B 67 131
[8] Schineller E R, Flam R P and Wilmot D W 1968 J. Opt. Soc. Am. 58 1171
[9] Bai M Y, Zhao Y L, Jiao B B, Zhu L J, Zhang G D and Wang L 2018 Int. J. Mod. Phys. B 32 1850170
[10] Wang L L, Cui X J and Liu N Q 2018 Mod. Phys. Lett. B 32 1850288
[11] Zhao J H, Ye L L, Jiao X S, Yue Q Y and Liu Y 2020 Appl. Phys. A 126 531
[12] Liu P, Huang Q, Liu T, Guo S S, Zhang L and Wang X L 2012 Appl. Opt. 51 1681
[13] Chen F 2012 Laser Photon. Res. 6 622
[14] Bányász I, Zolnai Z, Fried M, Berneschi S, Pelli S and Nunzi-Conti G 2014 Nucl. Instrum. Methods Phys. Res. B 326 81
[15] Vázquez G V, Valiente R, Gómez-Salces S, Flores-Romero E, Rickards J and Trejo-Luna R 2016 Opt. Laser Technol. 79 132
[16] Cheng Y Z, Lv J M, Akhmadaliev S, Zhou S Q and Chen F 2016 Opt. Laser Technol. 81 122
[17] Liu C X, Zhang J, Lin S B, Yue Q Y, Zheng R L and Guo J H 2021 Opt. Commun. 495 127109
[18] Zhang J, Chen J Y, Lu Y, Wang Y S, Zhang L L, Yue Q Y, Zheng R L and Liu C X 2021 Vacuum 193 110493
[19] Liu F R, Liu T, Yao Y C, Liu Y, Kong W J, Cheng L, Bao Y F, Gu J J, Wang S M, Bu M Y and Huang H N 2022 J. Lumin. 242 118559
[20] Tzuang L D, Fang K J, Nussenzveig P, Fan S H and Lipson M 2014 Nat. Photon. 8 701
[21] Starobor A V, Yasuhara R, Zheleznov D S, Palashov O V and Khazanov E A 2014 IEEE J. Quantum Electron. 50 749
[22] Wang C X, Yao Y C and Tan Y 2019 Opt. Mater. Express 9 1128
[23] Wang Y, Shen X L, Zhu Q F and Liu C X 2018 Opt. Mater. Express 8 3288
[24] Ziegle J F 2013 SRIM-The Stopping and Range of Ions in Matter, http://www.srim.org
[25] Zhu Q F, Wang Y, Shen J P, Guo H T and Liu C X 2018 Chin. Phys. B 27 054218
[26] Liu C X, Cheng M, Fu L L, Zheng R L, Guo H T, Zhou Z G, Li W N, Lin S B and Wei W 2016 Chin. Phys. B 25 044211
[27] Liu C X, Liu T, Liu X H, Wei W and Peng B 2011 Chin. Phys. Lett. 28 114205
[28] Liu T, Kong W J, Qiao M and Yan C 2018 Results Phys. 11 822
[29] Song X X, Wang Y, Li S and Jia C L 2019 Physica B 552 209
[30] Huang Q, Liu P, Liu T, Zhang L and Wang X L 2012 Opt. Express 20 4213
[31] Zhao J H, Qin X F, Wang F X, Fu G, Wang H L and Wang X L 2013 Nucl. Instrum. Methods Phys. Res. B 307 452
[32] Liu T, Kong W J, Ren Y Y and Cheng Y 2017 Chin. Phys. B 26 076105
[33] Liu C X, Li W N, Wei W and Peng B 2012 Chin. Phys. B 21 074211
[34] Chandler P J and Lama F L 1986 Opt. Acta 33 127
[35] Liu C X, Shen X L, Li W N and Wei W 2017 Chin. Phys. B 26 034207
[36] Cheng Y Z, Lv J M, Akhmadaliev S, Zhou S Q and Chen F 2016 Opt. Laser Technol. 81 122
[37] Luan Q F, Tan Y, Akhmadaliev S, Zhou S Q, Yu H H, Zhang H J and Chen F 2015 Opt. Mater. 39 247
[1] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[2] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[3] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[4] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
[5] Mechanism of defect evolution in H+ and He+ implanted InP
Ren-Jie Liu(刘仁杰), Jia-Jie Lin(林家杰), N Daghbouj, Jia-Liang Sun(孙嘉良), Tian-Gui You(游天桂), Peng Gao(高鹏), Nie-Feng Sun(孙聂枫), and Min Liao(廖敏). Chin. Phys. B, 2021, 30(8): 086104.
[6] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
[7] Structure and luminescence of a-plane GaN on r-plane sapphire substrate modified by Si implantation
Lijie Huang(黄黎杰), Lin Li(李琳), Zhen Shang(尚震), Mao Wang(王茂), Junjie Kang(康俊杰), Wei Luo(罗巍), Zhiwen Liang(梁智文), Slawomir Prucnal, Ulrich Kentsch, Yanda Ji(吉彦达), Fabi Zhang(张法碧), Qi Wang(王琦), Ye Yuan(袁冶), Qian Sun(孙钱), Shengqiang Zhou(周生强), and Xinqiang Wang(王新强). Chin. Phys. B, 2021, 30(5): 056104.
[8] Cathodic shift of onset potential on TiO2 nanorod arrays with significantly enhanced visible light photoactivity via nitrogen/cobalt co-implantation
Xianyin Song(宋先印), Hongtao Zhou(周洪涛), and Changzhong Jiang(蒋昌忠). Chin. Phys. B, 2021, 30(5): 058505.
[9] Design and fabrication of GeAsSeS chalcogenide waveguides with thermal annealing
Limeng Zhang(张李萌), Jinbo Chen(陈锦波), Jierong Gu(顾杰荣), Yixiao Gao(高一骁), Xiang Shen(沈祥), Yimin Chen(陈益敏), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2021, 30(3): 034210.
[10] Bidirectional highly-efficient quantum routing in a T-bulge-shaped waveguide
Jia-Hao Zhang(张家豪), Da-Yong He(何大永), Gang-Yin Luo(罗刚银), Bi-Dou Wang(王弼陡), and Jin-Song Huang(黄劲松). Chin. Phys. B, 2021, 30(3): 034204.
[11] Oxygen vacancies and V co-doped Co3O4 prepared by ion implantation boosts oxygen evolution catalysis
Bo Sun(孙博), Dong He(贺栋), Hongbo Wang(王宏博), Jiangchao Liu(刘江超), Zunjian Ke(柯尊健), Li Cheng(程莉), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2021, 30(10): 106102.
[12] Effect of dark soliton on the spectral evolution of bright soliton in a silicon-on-insulator waveguide
Zhen Liu(刘振), Wei-Guo Jia(贾维国), Hong-Yu Wang(王红玉), Yang Wang(汪洋), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(6): 064212.
[13] Determination of activation energy of ion-implanted deuterium release from W-Y2O3
Xue-Feng Wang(王雪峰), Ji-Liang Wu(吴吉良), Qiang Li(李强), Rui-Zhu Yang(杨蕊竹), Zhan-Lei Wang(王占雷), Chang-An Chen(陈长安), Chun-Rong Feng(冯春蓉), Yong-Chu Rao(饶咏初), Xiao-Hong Chen(谌晓洪), Xiao-Qiu Ye(叶小球). Chin. Phys. B, 2020, 29(6): 065205.
[14] Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution
Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi. Chin. Phys. B, 2020, 29(5): 058102.
[15] Experimental and computational study of visible light-induced photocatalytic ability of nitrogen ions-implanted TiO2 nanotubes
Ruijing Zhang(张瑞菁), Xiaoli Liu(刘晓丽), Xinggang Hou(侯兴刚), Bin Liao(廖斌). Chin. Phys. B, 2020, 29(4): 048501.
No Suggested Reading articles found!