Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(5): 057101    DOI: 10.1088/1674-1056/20/5/057101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetic properties of Co-doped SnO: first-principles calculations

Tan Xing-Yi (谭兴毅), Chen Chang-Le (陈长乐), Jin Ke-Xin (金克新), Cao Xian-Sheng (曹先胜), Xing Hui (邢辉)
Shaannxi Key Laboratory of Condensed Matter Structures and Properties, School of Science, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  Based on density functional theory calculations, the electronic and magnetic properties of Co-doped SnO are investigated. It is found that the spin-polarized state, with a magnetic moment of about 1.0 μB per Co-dopant, is more favorable in energy than the non-spin-polarized state. Moreover, the origin of the ferromagnetism in Co-doped SnO is found to be the double exchange mechanism. Our results indicate that Co-doped SnO is a possible candidate of the p-type spintronics material.
Keywords:  dilute magnetic semiconductors      p-type SnO      first-principles calculations  
Received:  07 June 2010      Revised:  11 January 2011      Accepted manuscript online: 
PACS:  71.20.Nr (Semiconductor compounds)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61078057 and 50702046), the Northwestern Polytechnical University "Aoxiang Star" Project, and the Northwestern Polytechnical University Foundation for Fundamental Research of China (Grant No. NPU-FFR-JC200821/JC201048).

Cite this article: 

Tan Xing-Yi (谭兴毅), Chen Chang-Le (陈长乐), Jin Ke-Xin (金克新), Cao Xian-Sheng (曹先胜), Xing Hui (邢辉) Magnetic properties of Co-doped SnO: first-principles calculations 2011 Chin. Phys. B 20 057101

[1] Dietl T, Ohno H, Matsukura F, Cubert J and Ferrand D 2000 Science 287 1019
[2] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molmar S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[3] Jungwirth T, Sinova J, Mavsek J, Kuvcera J and MacDonald A H 2006 Rev. Mod. Phys. 78 809
[4] Zhang Z Z, Partoens B, Chang K and Peeters F M 2008 Phys. Rev. B 77 155201
[5] Errico L A, Renteria M and Weissmann M 2005 Phys. Rev. B 72 184425
[6] Sato K and Katayama-Yoshida H 2001 Jpn. J. Appl. Phys. 40 L334
[7] Sato K and Katayama-Yoshida H 2000 Jpn. J. Appl. Phys. 39 L555
[8] Liu H X, Wu S Y, Singh R K, Gu L, Smith D J, Newman N, Dilley N R, Montes L and Simmonds M B 2004 Appl. Phys. Lett. 85 4076
[9] Zhang Y B, Assadi M H N and Li S 2009 J. Phys.: Condens. Matter 21 175802
[10] Zhao L, Lu P F, Yu Z Y, Liu Y M, Wang D L and Ye H 2010 Chin. Phys. B 19 056104
[11] Liu X C, Lu Z H and Zhang F M 2010 Chin. Phys. B 19 027502
[12] Majumdar S and Banerji P 2010 J. Appl. Phys. 107 063702
[13] Yi J B, Lim C C, Xing G Z, Fan H M, Van L H, Huang S L, Yang K S, Huang X L, Qin X B, Wang B Y, Wu T, Wang L, Zhang H T, Gao X Y, Liu T, Wee A T S, Feng Y P and Ding J 2010 Phys. Rev. Lett. 104 137201
[14] Guo W, Fu L, Zhang Y, Zhang K, Liang L Y, Liu Z M, Cao H T and Pan X Q 2010 Appl. Phys. Lett. 96 042113
[15] Ogo Y, Hiramatsu H, Nomura K, Yanagi H, Kamiya T, Hirano M and Hosono H 2008 Appl. Phys. Lett. 93 032113
[16] Christensen N E, Svane A , PeltzerY and Blanc'a E L 2005 Phys. Rev. B 72 014109
[17] Segall M D, Lindan P L D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Conden. Matter 14 2717
[18] Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[19] Erhart P, Albe K and Klein A 2006 Phys. Rev. B 73 205203
[20] Izumi F 1981 J. Solid State Chem. 38 381
[21] Cui X Y, Medvedeva J E, Delley B, Freeman A J and Stampfl C 2007 Phys. Rev. B bf 76 045201
[22] Geurts J, Rau S, Richter W and Schmitte F J 1984 Thin Solid Films 121 217
[23] Zhang F C, Zhang Z Y, Zhang W H, Yan J F and Yun J N 2009 Chin. Phys. Lett. 26 016105
[24] Akai H 1998 Phys. Rev. Lett. 81 3002
[25] Krstajic P M, Peeters F M, Ivanov V A, Fleurov V and Kikoin K 2004 Phys. Rev. B 70 195215
[26] Liu C, Yun F and Morkoc H 2005 J. Mater. Sci-Mater. El. 16 555
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[3] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[4] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[9] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[10] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[11] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[12] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[13] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[14] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[15] First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices
Huihui He(何慧卉) and Shenyuan Yang(杨身园). Chin. Phys. B, 2022, 31(1): 017104.
No Suggested Reading articles found!