Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(5): 056801    DOI: 10.1088/1674-1056/20/5/056801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structures of Pt clusters on graphene doped with nitrogen, boron, and silicon: a theoretical study

Dai Xian-Qi(戴宪起)a)b)†, Tang Ya-Nan(唐亚楠) a)‡, Dai Ya-Wei(戴雅薇)a), Li Yan-Hui(李艳慧)a), Zhao Jian-Hua(赵建华)a), Zhao Bao(赵宝) a), and Yang Zong-Xian(杨宗献)a)
a Physics Department, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang 453007, China; b Physics Department, Zhengzhou Normal University, Zhengzhou 450044, China
Abstract  The structures of Pt clusters on nitrogen-, boron-, silicon- doped graphenes are theoretically studied using density-functional theory. These dopants (nitrogen, boron and silicon) each do not induce a local curvature in the graphene and the doped graphenes all retain their planar form. The formation energy of the silicon-graphene system is lower than those of the nitrogen-, boron-doped graphenes, indicating that the silicon atom is easier to incorporate into the graphene. All the substitutional impurities enhance the interaction between the Pt atom and the graphene. The adsorption energy of a Pt adsorbed on the silicon-doped graphene is much higher than those on the nitrogen- and boron-doped graphenes. The doped silicon atom can provide more charges to enhance the Pt-graphene interaction and the formation of Pt clusters each with a large size. The stable structures of Pt clusters on the doped-graphenes are dimeric, triangle and tetrahedron with the increase of the Pt coverage. Of all the studied structures, the tetrahedron is the most stable cluster which has the least influence on the planar surface of doped-graphene.
Keywords:  first-principles      doping      clusters structure      graphene  
Received:  22 August 2010      Revised:  09 December 2010      Accepted manuscript online: 
PACS:  68.35.-p (Solid surfaces and solid-solid interfaces: structure and energetics)  
  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
  68.43.-h (Chemisorption/physisorption: adsorbates on surfaces)  
  68.55.-a (Thin film structure and morphology)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60476047), the Henan Science and Technology Innovation Talent Support Program, China (Grant No. 2008HASTIT030), and the Innovation Scientists and Technicians Troop Construction Projects of Henan Province, China (Grant No. 104200510014).

Cite this article: 

Dai Xian-Qi(戴宪起), Tang Ya-Nan(唐亚楠), Dai Ya-Wei(戴雅薇), Li Yan-Hui(李艳慧), Zhao Jian-Hua(赵建华), Zhao Bao(赵宝), and Yang Zong-Xian(杨宗献) Structures of Pt clusters on graphene doped with nitrogen, boron, and silicon: a theoretical study 2011 Chin. Phys. B 20 056801

[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[2] Katsnelson M I 2007 Mater. Today 10 20
[3] Chen F, Chen Y P, Zhang M and Zhong J X 2010 Chin. Phys. B 19 086105
[4] Zhang Y, Cao J X and Yang W 2008 Chin. Phys. B 17 1881
[5] Li D and Kaner R B 2008 Science 320 1170
[6] Georgakilas V, Gournis D, Tzitzios V, Pasquato L, Guldi D M and Prato M 2007 J. Mater. Chem. 17 2679
[7] Niyogi S, Bekyarova E, Itkis M E, McWilliams J L, Hamon M A and Haddon R C 2006 J. Am. Chem. Soc. 128 7720
[8] Dikin D A, Stankovich S, Zimney E J, Piner R D, Dommett G H B, Evmenenko G, Nguyen S T and Ruoff R S 2007 Nature 448 457
[9] Li D, Muller M B, Gilje S, Kaner R B and Wallace G G 2008 Nat. Nanotechnol. 3 101
[10] Chen M S and Goodman D W 2006 Catal. Today 111 22
[11] Frelink T, Visscher W and van Veen J A R 1995 J. Electroanal. Chem. 382 65
[12] Lee S A, Park K W, Choi J H, Kwon B K and Sung Y E 2002 J. Electrochem. Soc. 149 1299
[13] Mukerjee S and McBreen J 1998 J. Electroanal. Chem. 448 163
[14] Narayanan R and El-Sayed M A 2004 Nano. Lett. 4 1343
[15] Park S, Wasileski S A and Weaver M J 2001 J. Phys. Chem. B 105 9719
[16] Borup R, Meyers J, Pivovar B, Km Y S, Mukundcon R, Garland N, Myers D, Wilson M, Garzon F and Wood D 2007 Chem. Rev. 107 3904
[17] Shirasaki T, Derre A, Menetrier M, Tressaud A and Flandrois S 2000 Carbon 38 1461
[18] Yu S S, Zheng W T and Jiang Q 2010 IEEE T. Nanotechnol. 9 78
[19] Czerw R, Terrones M, Charlier J C, Blase X, Foley B, Kamalakaran R, Grobert N, Terrones H, Ajayan P M, Blau W, Tekleab D, Ruhle M and Carroll D L 2001 Nano. Let. 1 457
[20] Naeini J G, Way B M, Dahn J R and Irwin J C 1996 Phys. Rev. B 54 144
[21] Branz W, Billas I M L, Malinowski N, Tast F, Heinebrodt M and Martin T P 1998 J. Chem. Phys. 109 3425
[22] Chen P, Wu X, Lin J and Tan K L 1999 Science 285 91
[23] Endo M, Hayashi T, Hong S H, Enoki T and Dresselhaus M S 2001 J. Appl. Phys. 90 5670
[24] Yu S S, Zheng W T and Jiang Q 2008 Carbon 46 537
[25] Barone V, Peralta J E, Uddin J and Scuseria G E 2006 J. Chem. Phys. 124 024709
[26] Latil S, Roche S, Mayou D and Charlier J C 2004 Phys. Rev. Lett. 92 256805
[27] Nevidomskyy A H, Csanyi G and Payne M C 2003 Phys. Rev. Lett. 91 105502
[28] Peng S and Cho K 2003 Nano. Lett. 3 513 bibitem28+1 Bai L and Zhou Z 2007 Carbon 45 2105
[29] Ao Z M, Yang J, Li S and Jiang Q 2008 Chem. Phys. Lett. 461 276
[30] Rangel E, Chavarria G R and Magana L F 2009 Carbon 47 531
[31] Acharya C K and Turner C H 2006 J. Phys. Chem. B 110 17706
[32] Seo D H, Kim H Y, Ryu J H and Lee H M 2009 J. Phys. Chem. C 113 10416
[33] Perdew J P, Burke K and Emzerhof M 1996 Phys. Rev. Lett. 77 3865
[34] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[35] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[36] Carlsson J M and Scheffler M 2006 Phys. Rev. Lett. 96 046806
[37] Zhou Z, Gao X, Yan J and Song D 2006 Carbon 44 939
[38] Singh R and Kroll P 2009 J. Phys: Condens. Matter 21 196002
[39] Wei A and Turner C H 2009 J. Phys. Chem. C 113 7069
[40] Meng G N, Arkus N, Brenner M P and Manoharan V N 2010 Science 327 560
[41] Wang Q J and Che J G 2009 Phys. Rev. Lett. 103 066802
[42] Dai X Q, Tang Y N, Zhao J H and Dai Y W 2010 J. Phys: Condens. Matter 22 316005 endfootnotesize
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[3] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[4] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[9] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[10] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[11] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[12] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[13] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[14] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[15] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
No Suggested Reading articles found!