Abstract The electronic structures and magnetocrystalline anisotropy (MA) of ordered hexagonal close-packed (hcp) Co1-xNix alloys are studied using the full-potential linear-augmented-plane-wave (FLAPW) method with generalized gradient approximation (GGA). Great changes of magnetocrystalline anisotropy energy (MAE) are gained with different Ni compositions. Also, in-plane magnetocrystalline anisotropy is obtained for Co15Ni in which the Snoek's limit is exceeded. It is found that the changes of the symmetry of the crystal field on Ni induce small variations in band structures around the Fermi level under different compositions, which plays an important role in modulating the magnetization direction, where the hybridization between Co-3d and Ni-3d orbits is of special importance in deciding the magnetocrystalline anisotropy of itinerant states. The rigid-band model is inapplicable to explain the evolution of magnetocrystalline anisotropy energy with Ni composition, and it is also inadequate to predict the magnetocrystalline anisotropy energy through the anisotropy of the orbital magnetic moment.
(Magnetization curves, hysteresis, Barkhausen and related effects)
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10774061 and 10975066).
Cite this article:
Zhang Sha(张莎), Pang Hua(庞华), Fang Yang(方阳), and Li Fa-Shen(李发伸) Electronic structures and magnetocrystalline anisotropy energies of ordered Co1-xNix alloys: a first principles study 2010 Chin. Phys. B 19 127102
[1]
Hüfner S, Wertheim G K, Cohen R L and Wernick J H 1972 Phys. Rev. Lett. 28 488
[2]
Hsieh H H, Chang Y K, Pong W F, Pieh J Y, Tseng P K, Sham T K, Coulthard I, Naftel S J, Lee J F, Chung S C and Tsang K L 1998 Phys. Rev. B 57 15204
[3]
Zhu Q X, Pang H and Li F S 2009 Chin. Phys. B 18 2953
[4]
Steinbeck L, Richter M and Eschrig H 2001 Phys. Rev. B 63 184431
[5]
Wu D X, Zhang Q M, Liu J P, Yuan D W and Wu R Q 2008 Phys. Rev. Lett. 92 052503
[6]
Burkert T, Eriksson O, James P, Simak S I, Johansson B and Nordström L 2004 Phys. Rev. B 69 104426
[7]
Eastham D A, Denby P M, Harrison A, Kirkman I W and Whittaker A G 2002 J. Phys.: Condens. Matter 14 605
[8]
Kuo C C, Lin W C, Chuang S F and Lin M T 2005 Surf. Sci. 576 76
[9]
Burkert T, Eriksson O, Simak S I, Ruban A V, Sanyal B, Nordström L and Wills J M 2005 Phys. Rev. B 71 134411
[10]
Ravindran P, Kjekshus A, Fjellvaag H, James P, Nordström L, Johansson B and Eriksson O 2001 Phys. Rev. B 63 144409
[11]
Gambardella P, Rusponi S, Veronese M, Dhesi S S, Grazioli C, Dallmeyer A, Cabria I, Zeller R, Dederichs P H, Kern K, Carbone C and Brune H 2003 Science 300 1130
[12]
Aymard L, Dumont B and Viau G 1996 J. Alloys Compd. 242 108
[13]
Turek I and Z'alve'ak T 2010 J. Phys.: Conference Series 200 052029
[14]
Hara K, Itoh K, Kamiya M, Okamoto K, Hashimoto T and Fujiwara H 1991 J. Magn. Magn. Mater. 102 247
[15]
Trygg J, Johansson B, Eriksson O and Wills J M 1995 Phys. Rev. Lett. 75 2871
[16]
Enkovaara J, Ayuela A, Nordström L and Nieminen R M 2002 Phys. Rev. B 65 134422
[17]
Galanakis I, Alouani M and Dreyssé H 2000 Phys. Rev. B 62 6475
[18]
James P, Eriksson O, Hjortstam O, Johansson B and Nordström L 2000 Phys. Rev. Lett. 76 915
[19]
Kakehashi Y and Hosohata O 1988 Journal de Physique Colloques 49 C8-73
[20]
Daalderop G H O, Kelly P J and Schuurmans M F H 1990 Phys. Rev. B 41 11919
[21]
Tung J C and Guo G Y 2007 Phys. Rev. B 76 094413
[22]
Mokrousov Y, Bihlmayer G, Heinze S and Blügel S 2006 Phys. Rev. Lett. 96 147201
[23]
Shick A B and Mryasov O N 2003 Phys. Rev. B 67 172407
[24]
Xue D S, Li F S, Fan X L and Wen F S 2008 Chin. Phys. Lett. 25 4120
[25]
Wen F S, Qiao L, Zhou D, Zuo W L, Yi H B and Li F S 2008 Chin. Phys. B 17 2263
[26]
Yang W F, Qiao L, Wei J Q, Zhang Z Q, Wang T and Li F S 2010 J. Appl. Phys. 107 033913
The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
A new direct band gap silicon allotrope o-Si32 Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.