Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 010302    DOI: 10.1088/1674-1056/ae111e
RAPID COMMUNICATION Prev   Next  

Electric-type Stern-Gerlach effect

Jiang-Lin Zhou(周蒋麟)1, Zou-Chen Fu(傅邹晨)1, Choo Hiap Oh(胡祖协)2,, and Jing-Ling Chen(陈景灵)3,†
1 School of Physics, Nankai University, Tianjin 300071, China;
2 Centre for Quantum Technologies and Department of Physics, National University of Singapore 117543, Singapore;
3 Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Tianjin 300071, China
Abstract  The Stern-Gerlach (SG) experiment is a fundamental experiment for revealing the existence of ``spin''. In this experiment, beams of silver atoms are sent through inhomogeneous magnetic fields to observe their deflection. Thus, the conventional SG experiment can be viewed as a magnetic-type spin effect. In this work, we successfully generalize the SG effect from magnetic-type to electric-type by solving Dirac's equation with a potential barrier, revealing an extraordinary spin effect. Beams of Dirac particles can be regarded as matter waves. Based on Dirac's equation, we obtain the explicit forms of the incident, reflected, and transmitted waves. The electric-type SG effect shows that the reflected and transmitted waves can exhibit notable spatial shifts, which depend on the spin direction and the incident angle of the wave. The electric-type SG effect has potential applications for separating Dirac particles with different spin directions and for estimating the spin direction of Dirac particles. Some discussions related to the interaction between spin and the electric field are also presented.
Keywords:  Dirac's electron      reflection and transmission      spin      Stern-Gerlach experiment      electric-type Stern-Gerlach effect  
Received:  02 September 2025      Revised:  29 September 2025      Accepted manuscript online:  09 October 2025
PACS:  03.65.Pm (Relativistic wave equations)  
  03.75.-b  
  03.65.Nk (Scattering theory)  
Fund: This project is supported by the Quantum Science and Technology-National Science and Technology Major Project of China (Grant No. 2024ZD0301000) and the National Natural Science Foundation of China (Grant No. 12275136).
Corresponding Authors:  Jing-Ling Chen     E-mail:  chenjl@nankai.edu.cn

Cite this article: 

Jiang-Lin Zhou(周蒋麟), Zou-Chen Fu(傅邹晨), Choo Hiap Oh(胡祖协), and Jing-Ling Chen(陈景灵) Electric-type Stern-Gerlach effect 2026 Chin. Phys. B 35 010302

[1] Greiner W 2001 Quantum Mechanics: An Introduction (Berlin: Springer) pp. 329-353
[2] Uhlenbeck G E and Goudsmit S 1925 Nat. Wiss. 13 953 (in German)
[3] Uhlenbeck G E and Goudsmit S 1926 Nature 117 264
[4] Dirac P A M 1928 Proc. R. Soc. Lond. A 117 610
[5] Greiner W 2000 Relativistic Quantum Mechanics. Wave Equations (Berlin: Springer) p. 99
[6] Pauli Jr W 1927 Z. Phys. 43 601 (in German)
[7] Flügge S 1999 Practical Quantum Mechanics (Berlin: Springer) p. 337
[8] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge: Cambridge University Press) pp. 171-247
[9] Artmann K 1948 Ann. Phys. 437 87 (in German)
[10] Goos F and Hänchen H 1947 Ann. Phys. 436 333 (in German)
[11] Mâaza M and Pardo B 1997 Opt. Commun. 142 84
[12] Ignatovich V K 2004 Phys. Lett. A 322 36
[13] Beenakker C W J, Sepkhanov R A, Akhmerov A R and Tworzydlo J 2009 Phys. Rev. Lett. 102 146804
[14] de Haan V O, Plomp J, Rekveldt T M, Kraan W H, van Well A A, Dalgliesh R M and Langridge S 2010 Phys. Rev. Lett. 104 010401
[15] Cheng M 2012 Eur. Phys. J. B 85 89
[16] Zhou L, Qin J L, Lan Z, Dong G and Zhang W 2015 Phys. Rev. A 91 031603(R)
[17] Huamán A and Usaj G 2019 Phys. Rev. A 100 033409
[18] Ban Y and Chen X 2023 Phys. Rev. A 108 042218
[19] Zhou J L, Zhang Z X, Fan X Y and Chen J L 2024 Phys. Rev. A 110 042202
[20] Xiang H and Zhai F 2024 Phys. Rev. B 109 035432
[21] Krekora P, Su Q and Grobe R 2004 Phys. Rev. Lett. 92 040406
[22] Hu M J, Miao H X and Zhang Y S 2024 Chin. Phys. B 33 020303
[23] Fedorov F I 2013 J. Opt. 15 014002
[24] Imbert C 1972 Phys. Rev. D 5 787
[25] Li C F 2007 Phys. Rev. A 76 013811
[26] Manchon A, Koo H C, Nitta J, Frolov SMand Duine R A 2015 Nature Mater. 14 871
[27] Hirsch J E 1999 Phys. Rev. Lett. 83 1834
[28] Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T and MacDonald A H 2004 Phys. Rev. Lett. 92 126603
[29] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539
[1] Pressure-induced superconductivity in kagome metal CsCr3Sb5: Role of spin-orbit coupling and inter-orbital spin fluctuations
Wei Wang(王巍), Shun-Li Yu(于顺利), and Jian-Xin Li(李建新). Chin. Phys. B, 2026, 35(2): 027401.
[2] Non-Markovian dynamical solver for efficient combinatorial optimization
Haijie Xu(徐海杰) and Zhe Yuan(袁喆). Chin. Phys. B, 2026, 35(2): 027503.
[3] Strong enhancement of spin-orbit torques and perpendicular magnetic anisotropy in [Pt0.75Ti0.25/Co-Ni multilayer/Ta]n superlattices
Xiaomiao Yin(阴小苗), Zhengxiao Li(李政霄), Jun Kang(康俊), Changmin Xiong(熊昌民), and Lijun Zhu(朱礼军). Chin. Phys. B, 2026, 35(1): 018502.
[4] Type-II Dirac nodal chain semimetal CrB4
Xiao-Yao Hou(侯逍遥), Ze-Feng Gao(高泽峰), Peng-Jie Guo(郭朋杰), Jian-Feng Zhang(张建丰), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2026, 35(1): 017301.
[5] Highly sensitive, multi-stage, and mid-infrared refractive index sensor based on photonic spin Hall effect
Jiaye Ding(丁嘉烨), Chenglong Wang(汪承龙), Shengli Liu(刘胜利), Peng Dong(董鹏), and Jie Cheng(程杰). Chin. Phys. B, 2026, 35(1): 014201.
[6] Interlayer exchange coupling effects on the spin-orbit torque in synthetic magnets
Haodong Fan(樊浩东), Zhongshu Feng(冯重舒), Tingwei Chen(陈亭伟), Xiaofeng Han(韩晓峰), Xinyu Shu(舒新愉), Mingzhang Wei(卫鸣璋), Shiqi Liu(刘士琦), Mengxi Wang(王梦溪), Shengru Chen(陈盛如), Xuejian Tang(唐学健), Menghao Jin(金蒙豪), Yungui Ma(马云贵), Bo Liu(刘波), and Tiejun Zhou(周铁军). Chin. Phys. B, 2025, 34(9): 098501.
[7] Corrigendum to “Multi-functional photonic spin Hall effect sensor controlled by phase transition”
Jie Cheng(程杰), Rui-Zhao Li(李瑞昭), Cheng Cheng(程骋), Ya-Lin Zhang(张亚林), Sheng-Li Liu(刘胜利), and Peng Dong(董鹏). Chin. Phys. B, 2025, 34(9): 099901.
[8] Non-quantized Zak phases, PT/APT symmetry transitions, and doubly degenerate exceptional points in a non-Hermitian spin-orbit coupled SSH model
Jun-Xing Huo(霍俊行), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2025, 34(7): 070301.
[9] Strongly tunable Ising superconductivity in van der Waals NbSe2-xTex nanosheets
Jingyuan Qu(曲静远), Guojing Hu(胡国静), Cuili Xiang(向翠丽), Hui Guo(郭辉), Senhao Lv(吕森浩), Yechao Han(韩烨超), Guoyu Xian(冼国裕), Qi Qi(齐琦), Zhen Zhao(赵振), Ke Zhu(祝轲), Xiao Lin(林晓), Lihong Bao(鲍丽宏), Yongjin Zou(邹勇进), Lixian Sun(孙立贤), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(6): 067401.
[10] Orbital magnetic field effect on spin waves in a triangular lattice tetrahedral antiferromagnetic insulator
Pi-Ye Zhou(周丕烨), Xiao-Hui Li(李晓慧), and Yuan Wan(万源). Chin. Phys. B, 2025, 34(6): 067501.
[11] Ground state of SU(3) spin-orbit coupled soft-core Bose gas
Jia Liu(刘佳), Jing Feng(冯婧), Ya-Jun Wang(王雅君), Xiao-Fei Zhang(张晓斐), and Xue-Ying Yang(杨雪滢). Chin. Phys. B, 2025, 34(6): 060301.
[12] Magnon behavior in YIG film under microwave excitation investigated by Brillouin light scattering
Guofu Xu(徐国服), Kang An(安康), Wenjun Ma(马文俊), Xiling Li(李喜玲), C. K. Ong, Chi Zhang(张驰), and Guozhi Chai(柴国志). Chin. Phys. B, 2025, 34(6): 067507.
[13] High-pressure synthesis of an oxynitride perovskite CeNbO2N with Nb4+ charge state
Shengjie Liu(刘胜杰), Xubin Ye(叶旭斌), Zhao Pan(潘昭), Jie Zhang(张杰), Shuai Tang(唐帅), Guangkai Zhang(张广凯), Maocai Pi(皮茂材), Zhiwei Hu(胡志伟), Chien-Te Chen(陈建德), Ting-Shan Chan(詹丁山), Cheng Dong(董成), Tian Cui(崔田), Yanping Huang(黄艳萍), Zhenhua Chi(迟振华), Yao Shen(沈瑶), and Youwen Long(龙有文). Chin. Phys. B, 2025, 34(6): 066202.
[14] SR and NMR studies on the van der Waals cluster magnet Nb3Cl8
Lin Yang(杨林), Detong Wu(吴德桐), Xin Han(韩鑫), Jun Luo(罗军), Bo Liu(刘波), Xiaoyan Ma(马肖燕), Huiqian Luo(罗会仟), Jie Yang(杨杰), Bing Shen(沈冰), Rhea Stewart, Devashibhai Adroja, Youguo Shi(石友国), Rui Zhou(周睿), and Shiliang Li(李世亮). Chin. Phys. B, 2025, 34(5): 057501.
[15] Resolving gravitational redshift with sub-millimeter height differences using spin-squeezed optical clocks
Deshui Yu(于得水), Jia Zhang(张佳), Shougang Zhang(张首刚), Tiantian Shi(史田田), and Jingbiao Chen(陈景标). Chin. Phys. B, 2025, 34(5): 054208.
No Suggested Reading articles found!