Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 090308    DOI: 10.1088/1674-1056/adeb5e
GENERAL Prev   Next  

Adiabatic holonomic quantum computation in decoherence-free subspaces with two-body interaction

Xiaoyu Sun(孙晓雨)1, Lei Qiao(乔雷)2,†, and Peizi Zhao(赵培茈)1,‡
1 Department of Physics, Shandong University, Jinan 250100, China;
2 Peng Huanwu Collaborative Center for Research and Education, Beihang University, Beijing 100191, China
Abstract  Adiabatic holonomic gates possess the geometric robustness of adiabatic geometric phases, i.e., dependence only on the evolution path of the parameter space but not on the evolution details of the quantum system, which, when coordinated with decoherence-free subspaces, permits additional resilience to the collective dephasing environment. However, the previous scheme [Phys. Rev. Lett. 95 130501 (2005)] of adiabatic holonomic quantum computation in decoherence-free subspaces requires four-body interaction that is challenging in practical implementation. In this work, we put forward a scheme to realize universal adiabatic holonomic quantum computation in decoherence-free subspaces using only realistically available two-body interaction, thereby avoiding the difficulty of implementing four-body interaction. Furthermore, an arbitrary one-qubit gate in our scheme can be realized by a single-shot implementation, which eliminates the need to combine multiple gates for realizing such a gate.
Keywords:  adiabatic evolution      holonomic quantum computation      decoherence-free subspaces  
Received:  25 April 2025      Revised:  21 June 2025      Accepted manuscript online:  03 July 2025
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12305021).
Corresponding Authors:  Lei Qiao, Peizi Zhao     E-mail:  qiaolei@buaa.edu.cn;pzzhao@sdu.edu.cn

Cite this article: 

Xiaoyu Sun(孙晓雨), Lei Qiao(乔雷), and Peizi Zhao(赵培茈) Adiabatic holonomic quantum computation in decoherence-free subspaces with two-body interaction 2025 Chin. Phys. B 34 090308

[1] Berry M V 1984 Proc. R. Soc. Lond. A 392 45
[2] Wilczek F and Zee A 1984 Phys. Rev. Lett. 52 2111
[3] Jones J A, Vedral V, Ekert A and Castagnoli G 2000 Nature 403 869
[4] Zanardi P and Rasetti M 1999 Phys. Lett. A 264 94
[5] Duan L M, Cirac J I and Zoller P 2001 Science 292 1695
[6] Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 58 1593
[7] Anandan J 1988 Phys. Lett. A 133 171
[8] Wang X B and Matsumoto K 2001 Phys. Rev. Lett. 87 097901
[9] Zhu S L and Wang Z D 2002 Phys. Rev. Lett. 89 097902
[10] Sjöqvist E, Tong D M, Andersson L M, Hessmo B, Johansson M and Singh K 2012 New J. Phys. 14 103035
[11] Xu G F, Zhang J, Tong D M, Sjöqvist E and Kwek L C 2012 Phys. Rev. Lett. 109 170501
[12] Xu G F, Liu C L, Zhao P Z and Tong D M 2015 Phys. Rev. A 92 052302
[13] Sjöqvist E 2016 Phys. Lett. A 380 65
[14] Herterich E and Sjöqvist E 2016 Phys. Rev. A 94 052310
[15] Zhao P Z, Li K Z, Xu G F and Tong D M 2020 Phys. Rev. A 101 062306
[16] Zhao P Z and Tong D M 2023 Phys. Rev. A 108 012619
[17] Xue Z Y, Zhou J and Wang Z D 2015 Phys. Rev. A 92 022320
[18] Wang Y M, Zhang J, Wu C F, You J Q and Romero G 2016 Phys. Rev. A 94 012328
[19] Zhao P Z, Cui X D, Xu G F, Sjöqvist E and Tong D M 2017 Phys. Rev. A 96 052316
[20] Kang Y H, Chen Y H, Shi Z C, Huang B H, Song J and Xia Y 2018 Phys. Rev. A 97 042336
[21] Xu G F, Sjöqvist E and Tong D M 2018 Phys. Rev. A 98 052315
[22] Chen T, Zhang J and Xue Z Y 2018 Phys. Rev. A 98 052314
[23] Zhao P Z, Xu G F and Tong D M 2019 Phys. Rev. A 99 052309
[24] Zhang F H, Zhang J, Gao P and Long G L 2019 Phys. Rev. A 100 012329
[25] Sun L N, Yan L L, Su S L and Jia Y 2021 Phys. Rev. Appl. 16 064040
[26] Xu G F, Zhao P Z, Sjöqvist E and Tong D M 2021 Phys. Rev. A 103 052605
[27] Liang Y, Shen P, Chen T and Xue Z Y 2022 Phys. Rev. Appl. 17 034015
[28] Song P Y, Wei J F, Xu P, Yan L L, Feng M, Su S L and Chen G 2024 Phys. Rev. A 109 022613
[29] Su S L, Wang C, Song P Y and Chen G 2024 Chin. Phys. Lett. 41 040302
[30] Abdumalikov A A, Fink J M, Juliusson K, Pechal M, Berger S,Wallraff A and Filipp S 2013 Nature 496 482
[31] Feng G R, Xu G F and Long G L 2013 Phys. Rev. Lett. 110 190501
[32] Zu C, Wang W B, He L, Zhang W G, Dai C Y, Wang F and Duan L M 2014 Nature 514 72
[33] Arroyo-Camejo S, Lazariev A, Hell SWand Balasubramanian G 2014 Nat. Commun. 5 4870
[34] Zhou B B, Jerger P C, Shkolnikov V O, Heremans F J, Burkard G and Awschalom D D 2017 Phys. Rev. Lett. 119 140503
[35] Sekiguchi Y, Niikura N, Kuroiwa R, Kano H and Kosaka H 2017 Nat. Photonics 11 309
[36] Li H, Liu Y and Long G L 2017 Sci. China Phys. Mech. Astron. 60 080311
[37] Xu Y, Cai W, Ma Y, Mu X, Hu L, Chen T, Wang H, Song Y P, Xue Z Y, Yin Z Q and Sun L 2018 Phys. Rev. Lett. 121 110501
[38] Nagata K, Kuramitani K, Sekiguchi Y and Kosaka H 2018 Nat. Commun. 9 3227
[39] Zhang Z X, Zhao P Z,Wang T H, Xiang L, Jia Z L, Duan P, Tong D M, Yin Y and Guo G P 2019 New J. Phys. 21 073024
[40] Tong D M, Singh K, Kwek L C and Oh C H 2005 Phys. Rev. Lett. 95 110407
[41] Tong D M 2010 Phys. Rev. Lett. 104 120401
[42] Falci G, Fazio R, Palma G M, Siewert J and Vedral V 2000 Nature 407 355
[43] Solinas P, Zanardi P, Zanghi N and Rossi F 2003 Phys. Rev. A 67 062315
[44] Wu H, Gauger E M, George R E, Mottonen M, Riemann H, Abrosimov N V, Becker P, Pohl H, Itoh K M, Thewalt M L W and Morton J J L 2013 Phys. Rev. A 87 032326
[45] Toyoda K, Uchida K, Noguchi A, Haze S and Urabe S 2013 Phys. Rev. A 87 052307
[46] Wu L A, Zanardi P and Lidar D A 2005 Phys. Rev. Lett. 95 130501
[47] Liang Z T, Du Y X, Huang W, Xue Z Y and Yan H 2014 Phys. Rev. A 89 062312
[48] Zhao P Z, Xu G F, Ding Q M, Sjöqvist E and Tong D M 2017 Phys. Rev. A 95 062310
[49] Zhang J, Kwek L C, Sjöqvist E, Tong D M and Zanardi P 2014 Phys. Rev. A 89 042302
[50] Zhao P Z, Wu X and Tong D M 2021 Phys. Rev. A 103 012205
[51] Zhang J, Devitt S J, You J Q and Nori F 2018 Phys. Rev. A 97 022335
[52] Dzyaloshinsky L 1958 J. Phys. Chem. Solids 4 241
[53] Moriya T 1960 Phys. Rev. Lett. 4 228
[54] Sørensen A and Mølmer K 1999 Phys. Rev. Lett. 82 1971
[55] Mølmer K and Sørensen A 1999 Phys. Rev. Lett. 82 1835
[56] Filipp S, Klepp J, Hasegawa Y, Spehr C P, Schmidt U, Geltenbort P and Rauch H 2009 Phys. Rev. Lett. 102 030404
[57] Gasparinetti S, Solinas P and Pekola J P 2011 Phys. Rev. Lett. 107 207002
[58] Huang Y Y, Wu Y K, Wang F, Hou P Y, Wang W B, Zhang W G, Lian W Q, Liu Y Q, Wang H Y, Zhang H Y, He L, Chang X Y, Xu Y and Duan L M 2019 Phys. Rev. Lett. 122 010503
[1] On the usefulness of an assisted driving Hamiltonian for quantum adiabatic evolution
Jie Sun(孙杰), Songfeng Lu(路松峰). Chin. Phys. B, 2018, 27(11): 110306.
[2] Generation of multiparticle three-dimensional entanglement state via adiabatic passage
Wu Xi (吴熙), Chen Zhi-Hua (陈志华), Ye Ming-Yong (叶明勇), Chen Yue-Hua (陈悦华), Lin Xiu-Min (林秀敏). Chin. Phys. B, 2013, 22(4): 040309.
[3] Partial evolution based local adiabatic quantum search
Sun Jie(孙杰), Lu Song-Feng(路松峰), Liu Fang(刘芳), and Yang Li-Ping(杨莉萍) . Chin. Phys. B, 2012, 21(1): 010306.
[4] A quantum search algorithm based on partial adiabatic evolution
Zhang Ying-Yu(张映玉), Hu He-Ping(胡和平), and Lu Song-Feng(路松峰) . Chin. Phys. B, 2011, 20(4): 040309.
[5] Dynamical instability and adiabatic evolution of the atom--homonuclear--trimer dark state in a condensate system
Meng Shao-Ying(孟少英), Wu Wei(吴炜), Liu Bin(刘彬), Ye Di-Fa(叶地发), and Fu Li-Bin(傅立斌). Chin. Phys. B, 2009, 18(9): 3844-3849.
[6] One-step implementing three-qubit phase gate via manipulating rf SQUID qubits in the decoherence-free subspace with respect to cavity decay
Shao Xiao-Qiang(邵晓强), Chen Li(陈丽), Zhang Shou(张寿), and Zhao Yong-Fang(赵永芳). Chin. Phys. B, 2009, 18(12): 5161-5167.
[7] Generation and concentration of atomic entangled state via adiabatic evolution
Ye Sai-Yun(叶赛云). Chin. Phys. B, 2007, 16(10): 2968-2972.
No Suggested Reading articles found!