Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 100304    DOI: 10.1088/1674-1056/ace15b
GENERAL Prev   Next  

Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit

Zhimin Wang(王治旻), Zhuang Ma(马壮), Xiangmin Yu(喻祥敏), Wen Zheng(郑文), Kun Zhou(周坤), Yujia Zhang(张宇佳), Yu Zhang(张钰), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬)
National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
Abstract  One of the key features required to realize fault-tolerant quantum computation is the robustness of quantum gates against errors. Since geometric quantum gate is naturally insensitivity to noise, it appears to be a promising routine to achieve high-fidelity, robust quantum gates. The implementation of geometric quantum gate however faces some troubles such as its complex interaction among multiple energy levels. Moreover, traditional geometric schemes usually take more time than equivalent dynamical ones. Here, we experimentally demonstrate a geometric gate scheme with the time-optimal control (TOC) technique in a superconducting quantum circuit. With a transmon qubit and operations restricted to two computational levels, we implement a set of geometric gates which exhibit better robustness features against control errors than the dynamical counterparts. The measured fidelities of TOC $X$ gate and ${X}/{2}$ gate are $99.81 \%$ and $99.79 \%$ respectively. Our work shows a promising routine toward scalable fault-tolerant quantum computation.
Keywords:  superconducting qubits      geometric quantum computation      time-optimal control  
Received:  10 April 2023      Revised:  14 June 2023      Accepted manuscript online:  25 June 2023
PACS:  03.67.-a (Quantum information)  
  03.67.Lx (Quantum computation architectures and implementations)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
Fund: Project supported by the Key Research and Development Program of Guangdong Province, China (Grant No. 2018B030326001), the National Natural Science Foundation of China (Grant Nos. 11474152, 12074179, U21A20436, and 61521001), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BE2021015-1).
Corresponding Authors:  Shaoxiong Li, Yang Yu     E-mail:  shaoxiong.li@nju.edu.cn;yuyang@nju.edu.cn

Cite this article: 

Zhimin Wang(王治旻), Zhuang Ma(马壮), Xiangmin Yu(喻祥敏), Wen Zheng(郑文), Kun Zhou(周坤), Yujia Zhang(张宇佳), Yu Zhang(张钰), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬) Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit 2023 Chin. Phys. B 32 100304

[1] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press)
[2] Jones J, Hansen R and Mosca M 1998 Journal of Magnetic Resonance 135 353
[3] Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
[4] Yoneda J, Takeda K, Otsuka T, Nakajima T, Delbecq M R, Allison G, Honda T, Kodera T, Oda S, Hoshi Y, Usami N, Itoh K M and Tarucha S 2018 Nat. Nanotechnol. 13 102
[5] Nakamura Y, Pashkin Y A and Tsai J S 1999 Nature 398 786
[6] Barends R, Kelly J, Megrant A, et al. 2014 Nature 508 500
[7] Neill C, Roushan P, Kechedzhi K, et al. 2018 Science 360 195
[8] Reagor M, Osborn C B, Tezak N, et al. 2018 Sci. Adv. 4 eaao3603
[9] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505
[10] Wu Y, Bao W S, Cao S, et al. 2021 Phys. Rev. Lett. 127 180501
[11] Zanardi P and Rasetti M 1999 Phys. Lett. A 264 94
[12] Pachos J, Zanardi P and Rasetti M 1999 Phys. Rev. A 61 010305
[13] Duan L M, Cirac J I and Zoller P 2001 Science 292 1695
[14] Wang X B and Keiji M 2001 Phys. Rev. Lett. 87 097901
[15] Zhu S L and Wang Z D 2002 Phys. Rev. Lett. 89 097902
[16] Zhu S L and Wang Z D 2003 Phys. Rev. Lett. 91 187902
[17] Zhao P Z, Cui X D, Xu G F, Sjöqvist E and Tong D M 2017 Phys. Rev. A 96 052316
[18] Chen T and Xue Z Y 2018 Phys. Rev. Appl. 10 054051
[19] Sjöqvist E, Tong D M, Andersson L M, Hessmo B, Johansson M and Singh K 2012 New J. Phys. 14 103035
[20] Xu G F, Zhang J, Tong D M, Sjöqvist E and Kwek L C 2012 Phys. Rev. Lett. 109 170501
[21] Liu B J, Song X K, Xue Z Y, Wang X and Yung M H 2019 Phys. Rev. Lett. 123 100501
[22] Chen T and Xue Z Y 2020 Phys. Rev. Appl. 14 064009
[23] Carlini A, Hosoya A, Koike T and Okudaira Y 2007 Phys. Rev. A 75 042308
[24] Abad T, Fernández-Pendás J, Frisk Kockum A and Johansson G 2022 Phys. Rev. Lett. 129 150504
[25] Magesan E, Gambetta J M, Johnson B R, Ryan C A, Chow J M, Merkel S T, da Silva M P, Keefe G A, Rothwell M B, Ohki T A, Ketchen M B and Steffen M 2012 Phys. Rev. Lett. 109 080505
[26] Chuang I L and Nielsen M A 1997 J. Mod. Opt. 44 2455
[27] Shukla A, Sisodia M and Pathak A 2020 Phys. Lett. A 384 126387
[1] Entanglement properties of superconducting qubits coupled to a semi-infinite transmission line
Yang-Qing Guo(郭羊青), Ping-Xing Chen(陈平形), and Jian Li(李剑). Chin. Phys. B, 2023, 32(6): 060302.
[2] Universal quantum control based on parametric modulation in superconducting circuits
Dan-Yu Li(李丹宇), Ji Chu(储继), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Shao-Xiong Li(李邵雄), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(7): 070308.
[3] Invariants-based shortcuts for fast generating Greenberger—Horne—Zeilinger state among three superconducting qubits
Jing Xu(徐晶), Lin Yu(于琳), Jin-Lei Wu(吴金雷), Xin Ji(计新). Chin. Phys. B, 2017, 26(9): 090301.
[4] Fast generating W state of three superconducting qubits via Lewis-Riesenfeld invariants
Lin Yu(于琳), Jing Xu(徐晶), Jin-Lei Wu(吴金雷), Xin Ji(计新). Chin. Phys. B, 2017, 26(6): 060306.
[5] Dynamical decoupling pulses on the quantum correlations for the system of superconducting quantum circuit
Wang Dong-Mei (王冬梅), Qian Yi (钱懿), Xu Jing-Bo (许晶波), Yu You-Hong (俞攸红). Chin. Phys. B, 2015, 24(11): 110304.
[6] Resonant interaction scheme for GHZ state preparation and quantum phase gate with superconducting qubits in a cavity
Liu Xin (刘欣), Liao Qing-Hong (廖庆洪), Fang Guang-Yu (方光宇), Wang Yue-Yuan (王月媛), Liu Shu-Tian (刘树田). Chin. Phys. B, 2014, 23(2): 020311.
[7] Generating genuine multipartite entanglement via XY-interactionand via projective measurements
Mazhar Ali. Chin. Phys. B, 2014, 23(12): 120307.
No Suggested Reading articles found!