| CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Epitaxial growth of Bi nanowires on Pb-√77 × √3 surface |
| Siyu Huo(霍思宇)1,2,†, Jieying Li(李洁莹)1,2,†, Yuzhou Liu(刘宇舟)1,2, Desheng Cai(蔡德胜)1,2, Yitong Gu(谷易通)1,2, Haoen Chi(迟浩恩)1,2, Wenhui Pang(庞文慧)1,2, Gan Yu(于淦)1,2, Xiaoying Shi(史晓影)1,2, Wenguang Zhu(朱文光)1,2,3,‡, and Shengyong Qin(秦胜勇)1,2,3,§ |
1 International Center for Quantum Design of Functional Materials (ICQD), University of Science and Technology of China, Hefei 230026, China; 2 CAS (Chinese Academy of Sciences) Key Laboratory of Strongly Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei 230026, China; 3 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China |
|
|
|
|
Abstract Confining particles in one-dimensional (1D) systems profoundly modifies their electronic behaviors, which have been extensively demonstrated in carbon nanotubes and atomic chains. Structural instabilities and electron localizations often dominate the conductivity of 1D nanowires. Here, we successfully grew Bi single nanowires and nanowire arrays on Pb-$\sqrt 7 \times\sqrt 3 $ substrates via molecular beam epitaxy, both of which exhibit metallic behavior. Using scanning tunneling microscopy and first-principles density functional theory calculations, the interwire coupling and the correlation between nanowire bundles and electronic properties are investigated. A characteristic peak at 0.75 eV is observed on single wires and wire bundles of up to four nanowires, whereas interwire coupling weakens it and makes it disappear for wire bundles of five and above. These findings illustrate that the interwire coupling plays a critical role in the electronic structure of the 1D system, which provides insights for the design of nano-electronics materials.
|
Received: 15 April 2025
Revised: 29 May 2025
Accepted manuscript online: 30 May 2025
|
|
PACS:
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
| |
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
| |
73.21.-b
|
(Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)
|
| |
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12374196, 92165201, and 11634011), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302800), the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-046), the Fundamental Research Funds for the Central Universities (Grant Nos. WK3510000006 and WK3430000003), and the Initiative Project in Quantum Information Technologies of Anhui Province, China (Grant No. AHY170000). |
Corresponding Authors:
Wenguang Zhu, Shengyong Qin
E-mail: wgzhu@ustc.edu.cn;syqin@ustc.edu.cn
|
Cite this article:
Siyu Huo(霍思宇), Jieying Li(李洁莹), Yuzhou Liu(刘宇舟), Desheng Cai(蔡德胜), Yitong Gu(谷易通), Haoen Chi(迟浩恩), Wenhui Pang(庞文慧), Gan Yu(于淦), Xiaoying Shi(史晓影), Wenguang Zhu(朱文光), and Shengyong Qin(秦胜勇) Epitaxial growth of Bi nanowires on Pb-√77 × √3 surface 2025 Chin. Phys. B 34 106801
|
[1] Yan K, Zhang L, Kuang Q, Wei Z, Yi Y, Wang J and Yang S 2014 ACS Nano 8 3771 [2] Tian Y, Sakr M R, Kinder J M, Liang D, MacDonald M J, Qiu R L, Gao H J and Gao X P 2012 Nano Lett. 12 6492 [3] Hong S S, Zhang Y, Cha J J, Qi X L and Cui Y 2014 Nano Lett. 14 2815 [4] Liu P, Williams J R and Cha J J 2019 Nat. Rev. Mater. 4 479 [5] Cao L, Ang Y S, Wu Q and Ang L K 2020 Phys. Rev. B 101 035422 [6] Rogers J A 2010 Nat. Nanotechnol. 5 698 [7] Wu D J, Jiang S M and Liu X J 2012 Chin. Phys. B 21 077803 [8] Boukai A I, Bunimovich Y, Tahir K J, Yu J K, Goddard I W A and Heath J R 2008 Nature 451 168 [9] Goktas N I, Wilson P, Ghukasyan A, Wagner D, McNamee S and LaPierre R 2018 Appl. Phys. Rev. 5 041305 [10] Zhang Z and Chen J 2018 Chin. Phys. B 27 035101 [11] Sutter P, French J S, Khorashad L K, Argyropoulos C and Sutter E 2021 Nano Lett. 21 4335 [12] Park I, Jin K H, Kim K W and Kim J 2025 Small 21 2409249 [13] Wang D Q, Zhou Z Y, Zhu R and Ye X Y 2008 Chin. Phys. B 17 3875 [14] Xu Y J, Cao G H, Li Q Y, Xue C L, Zhao W M, Wang Q W, Dou L G, Du X, Meng Y X, Wang Y K, Gao Y H, Jia Z Y, Li W, Ji L L, Li F S, Zhang Z Y, Cui P, Xing D Y and Li S C 2024 Nat. Commun. 15 4784 [15] Zhuang J, Li J, Liu Y, Mu D, Yang M, Liu Y, Zhou W, Hao W, Zhong J and Du Y 2021 ACS Nano 15 14850 [16] Luttinger J M 1963 J. Math. Phys. 4 1154 [17] Barak G, Steinberg H, Pfeiffer L N, West K W, Glazman L, Von O F and Yacoby A 2010 Nat. Phys. 6 489 [18] Abrikosov A A and Ryzhkin I A 1978 Adv. Phys. 27 147 [19] Prigodin V N 1997 Synth. Met. 84 705 [20] Begum S, Fleurov V, Kagalovsky V and Yurkevich I V 2019 J. Phys.: Condens. Matter 31 425601 [21] Qin S, Kim T H, Zhang Y, Ouyang W, Weitering H H, Shih C K, Baddorf A P, Wu R and Li A P 2012 Nano Lett. 12 938 [22] Ahn J, Byun J, Koh H, Rotenberg E, Kevan S and Yeom H 2004 Phys. Rev. Lett. 93 106401 [23] Deng J, Huo D, Bai Y, Guo Y, Pan Z, Lu S, Cui P, Zhang Z and Zhang C 2020 Nano Lett. 20 8866 [24] Ni J, Bi X, Jiang Y, Li L and Lu J 2017 Nano Energy 34 356 [25] Wang A, HongW, Li L, Guo R, Xiang Y, Ye Y, Zou G, Hou H and Ji X 2022 Energy Storage Mater. 44 145 [26] Witting I T, Chasapis T C, Ricci F, Peters M, Heinz N A, Hautier G and Snyder G J 2019 Adv. Electron. Mater. 5 1800904 [27] He S, Bahrami A, Zhang X, Martínez I G, Lehmann S and Nielsch K 2022 Adv. Mater. Technol. 7 2100953 [28] Hirahara T, Fukui N, Shirasawa T, Yamada M, Aitani M, Miyazaki H, Matsunami M, Kimura S, Takahashi T, Hasegawa S and Kobayashi K 2013 Phys. Rev. Lett. 110 149901 [29] Sabater C, Gosalbez M D, Fernandez R J, Rodrigo J G, Untiedt C and Palacios J J 2013 Phys. Rev. Lett. 110 176802 [30] Drozdov I K, Alexandradinata A, Jeon S, Nadj P S, Ji H, Cava R J, Bernevig B A and Yazdani A 2014 Nat. Phys. 10 664 [31] Liu Z, Liu C X, Wu Y S, Duan W H, Liu F and Wu J 2011 Phys. Rev. Lett. 107 136805 [32] Schindler F, Wang Z, Vergniory M G, Cook A M, Murani A, Sengupta S, Kasumov A Y, Deblock R, Jeon S, Drozdov I, Bouchiat H, Gueron S, Yazdani A, Bernevig B A and Neupert T 2018 Nat. Phys. 14 1067 [33] Wada M, Murakami S, Freimuth F and Bihlmayer G 2011 Phys. Rev. B 83 121310 [34] Nagao T, Sadowski J T, Saito M, Yaginuma S, Fujikawa Y, Kogure T, Ohno T, Hasegawa Y, Hasegawa S and Sakurai T 2004 Phys. Rev. Lett. 93 105501 [35] Bollmann T R J, Van G R, Zandvliet H JWand Poelsema B 2012 Phys. Rev. Lett. 109 176102 [36] Kowalczyk P J, Mahapatra O, Le Ster M, Brown S A, Bian G, Wang X and Chiang T C 2017 Phys. Rev. B 96 205434 [37] Gao Q and Widom M 2013 Phys. Rev. B 88 144102 [38] Fang A, Adamo C, Jia S, Cava R J,Wu S C, Felser C and Kapitulnik A 2018 Sci. Adv. 4 0330 [39] Fuseya Y, Katsuno H, Behnia K and Kapitulnik A 2021 Nat. Phys. 17 1031 [40] Lu P X, Zhang M, Zou W J and Kong C 2017 J. Mater. Res. 32 2405 [41] Tian M, Wang J, Kumar N, Han T, Kobayashi Y, Liu Y, Mallouk T E and Chan M H W 2006 Nano Lett. 6 2773 [42] Brochard S, Artacho E, Custance O, Brihuega I, Baró A M, Soler J M and Gómez-Rodríguez J M 2002 Phys. Rev. B 66 205403 [43] Brun C, Cren T, Cherkez V, Debontridder F, Pons S, Fokin D, Tringides M C, Bozhko S, Ioffe L B, Altshuler B L and Roditchev D 2014 Nat. Phys. 10 444 [44] Horcas I, Fernandez R, Gomez-Rodriguez J M, Colchero J, Gomez H J and Baro A M 2007 Rev. Sci. Instrum. 78 013705 [45] Krogstrup P, Ziino N, Chang W, Albrecht S, Madsen M, Johnson E, Nygard J, Marcus C M and Jespersen T 2015 Nat. Mater. 14 400 [46] Zhao S, Fathololoumi S, Bevan K, Liu D, Kibria M, Li Q, Wang G, Guo H and Mi Z 2012 Nano Lett. 12 2877 [47] Li P, Xie K, Li L, Li X, Xia Y, Zhang R and Qin S 2022 Phys. Status Solidi B 259 2200095 [48] Li P, Xie K, Xia Y, Cai D and Qin S 2023 Chin. Phys. B 32 066101 [49] He L, Cheng G, Zhu Y and Park H S 2023 Nano Lett. 23 5779 [50] McCreary K, Pi K, Swartz A, Han W, Bao W, Lau C, Guinea F, Katsnelson M and Kawakami R 2010 Phys. Rev. B 81 115453 [51] Patel S B, Li C, Al-Mahboob A, Sadowski J T and Zhou G 2025 J. Am. Chem. Soc. 147 1656 [52] Gao C L, Qian D, Liu C H, Jia J F and Liu F 2013 Chin. Phys. B 22 067304 [53] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [54] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [55] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [56] Blöchl P E, Först C J and Schimpl J 2003 Bull. Mater. Sci 26 33 [57] Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616 [58] Chandrasekaran N, Gann E, Jain N, Kumar A, Gopinathan S, Sadhanala A, Friend R H, Kumar A, McNeill C R and Kabra D 2016 ACS Appl. Mater. 8 20243 [59] Martens H 2006 Phys. Rev. Lett. 96 076603 [60] Dong C, Liu Y and Qi Y 2018 Acta Metall. Sin. 54 935 [61] Fogler M M, Teber S and Shklovskii B 2004 Phys. Rev. B 69 035413 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|