|
|
|
Impact of p-GaN thickness on the transport properties of two-dimensional hole gases in a GaN/AlGaN/GaN heterostructure |
| Pengfei Shao(邵鹏飞)1, Yifan Cheng (成毅凡)1, Yu Liu(柳裕)1, Qi Yao(姚齐)1, Zanjiang Qiao(乔赞江)1, Yanghu Peng (彭扬虎)1, Qin Cai(蔡青)1, Tao Tao(陶涛)1, Zili Xie(谢自力)1, Dunjun Chen(陈敦军)1, Bin Liu(刘斌)1, Rong Zhang(张荣)1,2, and Ke Wang(王科)1,† |
1 Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; 2 Department of Physics, OSED, Fujian Provincial Key Laboratory of Semiconductors Materials and Applications, Xiamen University, Xiamen 361005, China |
|
|
|
|
Abstract Polarization-induced two-dimensional hole gases (2DHG) in GaN/AlGaN/GaN heterostructures offer a promising pathway for advancing p-channel transistors. This work investigates the impact of p-GaN thickness on hole distribution and transport through temperature-dependent Hall measurements and TCAD simulations. It is demonstrated that the p-channel is composed of holes both in the p-GaN layer and in the 2DHG at the GaN/AlGaN heterointerface at 300 K, whereas at 77 K, the p-channel conduction is dominated solely by the 2DHG at the GaN/AlGaN heterointerface. The results also reveal the formation of a polarization-induced 2DHG at the GaN/AlGaN interface, exhibiting a high sheet density of 2.2×1013 cm-2 and a mobility of 16.2 cm2·V-1·s-1 at 300 K. The 2DHG sheet density remains nearly independent of p-GaN thickness when the p-GaN layer exceeds 30 nm. However, for p-GaN layers thinner than 30 nm, the 2DHG sheet density strongly depends on the p-GaN thickness, which is attributed to the gradual extension of the depletion region toward the GaN/AlGaN interface under the influence of surface trap states.
|
Received: 03 June 2025
Revised: 05 August 2025
Accepted manuscript online: 05 September 2025
|
|
PACS:
|
73.61.Ey
|
(III-V semiconductors)
|
|
| Fund: This work was supported by the National Key Research and Development Program of China (Grant No. 2024YFE0205000), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20243037), the National Natural Science Foundation of China (Grant Nos. 62074077 and 61921005), the Postdoctoral Fellowship Program of CPSF (Grant No. GZC20231098), and the Collaborative Innovation Center of Solid State Lighting and Energy- Saving Electronics. |
Corresponding Authors:
Ke Wang
E-mail: kewang@nju.edu.cn
|
Cite this article:
Pengfei Shao(邵鹏飞), Yifan Cheng (成毅凡), Yu Liu(柳裕), Qi Yao(姚齐), Zanjiang Qiao(乔赞江), Yanghu Peng (彭扬虎), Qin Cai(蔡青), Tao Tao(陶涛), Zili Xie(谢自力), Dunjun Chen(陈敦军), Bin Liu(刘斌), Rong Zhang(张荣), and Ke Wang(王科) Impact of p-GaN thickness on the transport properties of two-dimensional hole gases in a GaN/AlGaN/GaN heterostructure 2025 Chin. Phys. B 34 117301
|
[1] Khan M A, Kuznia J, Hove J V, Pan N and Carter J 1992 Appl. Phys. Lett. 60 3027 [2] Khan M A, Bhattarai A, Kuznia J and Olson D 1993 Appl. Phys. Lett. 63 1214 [3] Ambacher O, Smart J, Shealy J,Weimann N, Chu K, Murphy M, Schaff W, Eastman L, Dimitrov R and Wittmer L 1999 J. Appl. Phys. 85 3222 [4] Mishra U K, Shen L, Kazior T E and Wu Y F 2008 Proc. IEEE 96 287 [5] Mishra U K, Parikh P and Wu Y F 2002 Proc. IEEE 90 1022 [6] Zhang H C, Liang F Z, Song K, Xing C, Wang D H, Yu H B, Huang C, Sun Y, Yang L, Zhao X L, Sun H D and Long S B 2021 Appl. Phys. Lett. 118 242105 [7] Zhang H C, Liang F Z, Yang L, Gao Z X, Liang K, Liu S, Ye Y K, Yu H B, Chen W, Kang Y and Sun H D 2024 Adv. Mater. 36 2405874 [8] Then H W, Radosavljevic M, Koirala P, et al. 2022 IEEE International Electron Devices Meeting 3511 [9] Jiang X, Li C H, Yang S X, Liang J H, Lai L K, Dong Q Y, Huang W, Liu X Y and Luo W J 2023 Chin. Phys. B 32 037201 [10] Hughes B, Chu R, Lazar J and Boutros K 2015 IEEE International Electron Devices Meeting 1671 [11] Hahn H, Reuters B, Pooth A, Noculak A, Kalisch H and Vescan A 2013 Jpn. J. Appl. Phys. 52 128001 [12] Nomoto K, Chaudhuri R, Bader S J, Li L, Hickman A, Huang S, Lee H, Maeda T, Then H W, Radosavljevic M, Fischer P, Molnar A, Hwang J C M, Xing H G and Jena D 2020 IEEE International Electron Devices Meeting 163 [13] Raj A, Krishna A, Romanczyk B, Hatui N, LiuW, Keller S and Mishra U K 2023 IEEE Electron Device Lett. 44 9 [14] Chen K J, Wei J, Tang G, Xu H, Zheng Z, Zhang L and Song W 2020 IEEE International Electron Devices Meeting 2711 [15] Kinzer D 2020 IEEE International Electron Devices Meeting 2751 [16] Niu X R, Hou B, Zhang M, Yang L, Wu M, Zhang X C, Jia F C, Wang C, Ma X H and Hao Y 2023 Chin. Phys. B 32 108101 [17] Zheng Z Y, Song W J, Zhang L, Yang S, Wei J and Chen K J 2020 IEEE Electron Device Lett. 41 26 [18] Yu J J, Wei J, Yang J J, Li T, Yang H, Song Y M, Cui J W, Liu S H, Yang X L, Wang M J and Shen B 2025 IEEE Electron Device Lett. 46 139 [19] Yang C, Fu H Q, Peri P, Fu K, Yang T H, Zhou J G, Montes J, Smith D J and Zhao Y J 2021 IEEE Electron Device Lett. 42 1128 [20] Zhang K, Sumiya M, Liao M, Koide Y and Sang L 2016 Sci. Rep. 6 23683 [21] Reuters B, Hahn H, Pooth A, Hollander B, Breuer U, Heuken M, Kalisch H and Vescan A 2014 J. Phys. D: Appl. Phys. 47 175103 [22] Beckmann C, Wieben J, Thorsten Z, Kirchbrücher A, Ehrler J, Stamm R, Yang Z N, Kalisch H and Vescan A 2022 J. Phys. D: Appl. Phys. 55 435102 [23] Zhang Z X, Encomendero J, Chaudhuri R, Cho Y J, Protasenko V, Nomoto K, Lee K, Toita M, Xing H G and Jena D 2021 Appl. Phys. Lett. 119 162104 [24] Chaudhuri R, Bader S J, Chen Z, Muller D A, Xing H G and Jena D 2019 Science 365 1454 [25] Nakajima A, Liu P C, Ogura M, Makino T, Kakushima K, Nishizawa S, Ohashi H, Yamasaki S and Iwai H 2014 J. Appl. Phys. 115 153707 [26] Shao P F, Fan X, Li S Q, Chen S L, Zhou H, Liu H, Guo H, Xu W Z, Tao T, Xie Z L, Lu H,Wang K, Liu B, Chen D J, Zheng Y D and Zhang R 2023 Appl. Phys. Lett. 122 142102 [27] Su H, Zhang T, Xu S, Tao H, Zhang J and Hao Y 2023 IEEE Electron Device Lett. 44 1939 [28] Zhang Y, Sun Z, Wang W, Liang Y, Cui M, Zhao Y, Wen H and Liu W 2023 IEEE Trans. Electron Devices 70 31 [29] Li T, Zhang M, Yu J, Cui J, Yang J, Wu Y, Yang H, Zhang Y, Yang X, Wang M, Feng S, Shen B andWei J 2024 IEEE Trans. Electron Devices 71 2361 [30] Li Z H, Shao P F, Shi G J, Wu Y Z, Wang Z P, Li S Q, Zhang D Q, Tao T, Xu Q J, Xie Z L, Ye J D, Chen D J, Liu B, Wang K, Zheng Y D and Zhang R 2020 Chin. Phys. B 31 018102 [31] Ng Y H, Zheng Z Y, Zhang L, Liu R Z, Chen T, Feng S R, Shao Q M and Chen K J 2023 Appl. Phys. Lett. 123 142106 [32] Vurgaftman I and Meyer J R 2003 J. Appl. Phys. 94 3675 [33] Zhong Z Y, Ambacher O, Link A, Holy V, Stangl J, Lechner R T, Roch T and Bauer G 2002 Appl. Phys. Lett. 80 3521 [34] Chaudhuri R, Chen Z, Muller D A, Xing H G and Jena D 2021 Jpn. J. Appl. Phys. 130 025703 [35] Hashizume T and Nakasaki R 2002 Appl. Phys. Lett. 80 4564 [36] Köhler K, Wiegert J, Menner H P, Maier M and Kirste L 2008 J. Appl. Phys. 103 023706 [37] Barbet S, Aubry R, Forte-PoissonMA, Jacquet J C, Deresmes D,Mélin T and Théron D 2008 Appl. Phys. Lett. 93 212107 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|