Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 117301    DOI: 10.1088/1674-1056/ae0397
RAPID COMMUNICATION Prev   Next  

Impact of p-GaN thickness on the transport properties of two-dimensional hole gases in a GaN/AlGaN/GaN heterostructure

Pengfei Shao(邵鹏飞)1, Yifan Cheng (成毅凡)1, Yu Liu(柳裕)1, Qi Yao(姚齐)1, Zanjiang Qiao(乔赞江)1, Yanghu Peng (彭扬虎)1, Qin Cai(蔡青)1, Tao Tao(陶涛)1, Zili Xie(谢自力)1, Dunjun Chen(陈敦军)1, Bin Liu(刘斌)1, Rong Zhang(张荣)1,2, and Ke Wang(王科)1,†
1 Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
2 Department of Physics, OSED, Fujian Provincial Key Laboratory of Semiconductors Materials and Applications, Xiamen University, Xiamen 361005, China
Abstract  Polarization-induced two-dimensional hole gases (2DHG) in GaN/AlGaN/GaN heterostructures offer a promising pathway for advancing p-channel transistors. This work investigates the impact of p-GaN thickness on hole distribution and transport through temperature-dependent Hall measurements and TCAD simulations. It is demonstrated that the p-channel is composed of holes both in the p-GaN layer and in the 2DHG at the GaN/AlGaN heterointerface at 300 K, whereas at 77 K, the p-channel conduction is dominated solely by the 2DHG at the GaN/AlGaN heterointerface. The results also reveal the formation of a polarization-induced 2DHG at the GaN/AlGaN interface, exhibiting a high sheet density of 2.2×1013 cm-2 and a mobility of 16.2 cm2·V-1·s-1 at 300 K. The 2DHG sheet density remains nearly independent of p-GaN thickness when the p-GaN layer exceeds 30 nm. However, for p-GaN layers thinner than 30 nm, the 2DHG sheet density strongly depends on the p-GaN thickness, which is attributed to the gradual extension of the depletion region toward the GaN/AlGaN interface under the influence of surface trap states.
Keywords:  gallium nitride      two-dimensional hole gases      transport property      GaN/AlGaN/GaN heterostructure  
Received:  03 June 2025      Revised:  05 August 2025      Accepted manuscript online:  05 September 2025
PACS:  73.61.Ey (III-V semiconductors)  
Fund: This work was supported by the National Key Research and Development Program of China (Grant No. 2024YFE0205000), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20243037), the National Natural Science Foundation of China (Grant Nos. 62074077 and 61921005), the Postdoctoral Fellowship Program of CPSF (Grant No. GZC20231098), and the Collaborative Innovation Center of Solid State Lighting and Energy- Saving Electronics.
Corresponding Authors:  Ke Wang     E-mail:  kewang@nju.edu.cn

Cite this article: 

Pengfei Shao(邵鹏飞), Yifan Cheng (成毅凡), Yu Liu(柳裕), Qi Yao(姚齐), Zanjiang Qiao(乔赞江), Yanghu Peng (彭扬虎), Qin Cai(蔡青), Tao Tao(陶涛), Zili Xie(谢自力), Dunjun Chen(陈敦军), Bin Liu(刘斌), Rong Zhang(张荣), and Ke Wang(王科) Impact of p-GaN thickness on the transport properties of two-dimensional hole gases in a GaN/AlGaN/GaN heterostructure 2025 Chin. Phys. B 34 117301

[1] Khan M A, Kuznia J, Hove J V, Pan N and Carter J 1992 Appl. Phys. Lett. 60 3027
[2] Khan M A, Bhattarai A, Kuznia J and Olson D 1993 Appl. Phys. Lett. 63 1214
[3] Ambacher O, Smart J, Shealy J,Weimann N, Chu K, Murphy M, Schaff W, Eastman L, Dimitrov R and Wittmer L 1999 J. Appl. Phys. 85 3222
[4] Mishra U K, Shen L, Kazior T E and Wu Y F 2008 Proc. IEEE 96 287
[5] Mishra U K, Parikh P and Wu Y F 2002 Proc. IEEE 90 1022
[6] Zhang H C, Liang F Z, Song K, Xing C, Wang D H, Yu H B, Huang C, Sun Y, Yang L, Zhao X L, Sun H D and Long S B 2021 Appl. Phys. Lett. 118 242105
[7] Zhang H C, Liang F Z, Yang L, Gao Z X, Liang K, Liu S, Ye Y K, Yu H B, Chen W, Kang Y and Sun H D 2024 Adv. Mater. 36 2405874
[8] Then H W, Radosavljevic M, Koirala P, et al. 2022 IEEE International Electron Devices Meeting 3511
[9] Jiang X, Li C H, Yang S X, Liang J H, Lai L K, Dong Q Y, Huang W, Liu X Y and Luo W J 2023 Chin. Phys. B 32 037201
[10] Hughes B, Chu R, Lazar J and Boutros K 2015 IEEE International Electron Devices Meeting 1671
[11] Hahn H, Reuters B, Pooth A, Noculak A, Kalisch H and Vescan A 2013 Jpn. J. Appl. Phys. 52 128001
[12] Nomoto K, Chaudhuri R, Bader S J, Li L, Hickman A, Huang S, Lee H, Maeda T, Then H W, Radosavljevic M, Fischer P, Molnar A, Hwang J C M, Xing H G and Jena D 2020 IEEE International Electron Devices Meeting 163
[13] Raj A, Krishna A, Romanczyk B, Hatui N, LiuW, Keller S and Mishra U K 2023 IEEE Electron Device Lett. 44 9
[14] Chen K J, Wei J, Tang G, Xu H, Zheng Z, Zhang L and Song W 2020 IEEE International Electron Devices Meeting 2711
[15] Kinzer D 2020 IEEE International Electron Devices Meeting 2751
[16] Niu X R, Hou B, Zhang M, Yang L, Wu M, Zhang X C, Jia F C, Wang C, Ma X H and Hao Y 2023 Chin. Phys. B 32 108101
[17] Zheng Z Y, Song W J, Zhang L, Yang S, Wei J and Chen K J 2020 IEEE Electron Device Lett. 41 26
[18] Yu J J, Wei J, Yang J J, Li T, Yang H, Song Y M, Cui J W, Liu S H, Yang X L, Wang M J and Shen B 2025 IEEE Electron Device Lett. 46 139
[19] Yang C, Fu H Q, Peri P, Fu K, Yang T H, Zhou J G, Montes J, Smith D J and Zhao Y J 2021 IEEE Electron Device Lett. 42 1128
[20] Zhang K, Sumiya M, Liao M, Koide Y and Sang L 2016 Sci. Rep. 6 23683
[21] Reuters B, Hahn H, Pooth A, Hollander B, Breuer U, Heuken M, Kalisch H and Vescan A 2014 J. Phys. D: Appl. Phys. 47 175103
[22] Beckmann C, Wieben J, Thorsten Z, Kirchbrücher A, Ehrler J, Stamm R, Yang Z N, Kalisch H and Vescan A 2022 J. Phys. D: Appl. Phys. 55 435102
[23] Zhang Z X, Encomendero J, Chaudhuri R, Cho Y J, Protasenko V, Nomoto K, Lee K, Toita M, Xing H G and Jena D 2021 Appl. Phys. Lett. 119 162104
[24] Chaudhuri R, Bader S J, Chen Z, Muller D A, Xing H G and Jena D 2019 Science 365 1454
[25] Nakajima A, Liu P C, Ogura M, Makino T, Kakushima K, Nishizawa S, Ohashi H, Yamasaki S and Iwai H 2014 J. Appl. Phys. 115 153707
[26] Shao P F, Fan X, Li S Q, Chen S L, Zhou H, Liu H, Guo H, Xu W Z, Tao T, Xie Z L, Lu H,Wang K, Liu B, Chen D J, Zheng Y D and Zhang R 2023 Appl. Phys. Lett. 122 142102
[27] Su H, Zhang T, Xu S, Tao H, Zhang J and Hao Y 2023 IEEE Electron Device Lett. 44 1939
[28] Zhang Y, Sun Z, Wang W, Liang Y, Cui M, Zhao Y, Wen H and Liu W 2023 IEEE Trans. Electron Devices 70 31
[29] Li T, Zhang M, Yu J, Cui J, Yang J, Wu Y, Yang H, Zhang Y, Yang X, Wang M, Feng S, Shen B andWei J 2024 IEEE Trans. Electron Devices 71 2361
[30] Li Z H, Shao P F, Shi G J, Wu Y Z, Wang Z P, Li S Q, Zhang D Q, Tao T, Xu Q J, Xie Z L, Ye J D, Chen D J, Liu B, Wang K, Zheng Y D and Zhang R 2020 Chin. Phys. B 31 018102
[31] Ng Y H, Zheng Z Y, Zhang L, Liu R Z, Chen T, Feng S R, Shao Q M and Chen K J 2023 Appl. Phys. Lett. 123 142106
[32] Vurgaftman I and Meyer J R 2003 J. Appl. Phys. 94 3675
[33] Zhong Z Y, Ambacher O, Link A, Holy V, Stangl J, Lechner R T, Roch T and Bauer G 2002 Appl. Phys. Lett. 80 3521
[34] Chaudhuri R, Chen Z, Muller D A, Xing H G and Jena D 2021 Jpn. J. Appl. Phys. 130 025703
[35] Hashizume T and Nakasaki R 2002 Appl. Phys. Lett. 80 4564
[36] Köhler K, Wiegert J, Menner H P, Maier M and Kirste L 2008 J. Appl. Phys. 103 023706
[37] Barbet S, Aubry R, Forte-PoissonMA, Jacquet J C, Deresmes D,Mélin T and Théron D 2008 Appl. Phys. Lett. 93 212107
[1] Hyperparameter optimization and force error correction of neuroevolution potential for predicting thermal conductivity of wurtzite GaN
Zhuo Chen(陈卓), Yuejin Yuan(袁越锦), Wenyang Ding(丁文扬), Shouhang Li(李寿航), Meng An(安盟), and Gang Zhang(张刚). Chin. Phys. B, 2025, 34(8): 086110.
[2] Impact of epitaxial structural parameters on two-dimensional hole gas properties in p-GaN/AlGaN/GaN heterostructures
Fuzhou Wen(文福洲), Qianshu Wu(吴千树), Jinwei Zhang(张津玮), Zhuoran Luo(罗卓然), Senyuan Xu(许森源), Hao Jiang(江灏), and Yang Liu(刘扬). Chin. Phys. B, 2025, 34(7): 077105.
[3] Band alignment of heterojunctions formed by PtSe2 with doped GaN
Zhuoyang Lv(吕卓阳), Guijuan Zhao(赵桂娟), Wanting Wei(魏婉婷), Xiurui Lv(吕秀睿), and Guipeng Liu(刘贵鹏). Chin. Phys. B, 2025, 34(4): 047304.
[4] Review of a direct epitaxial approach to achieving micro-LEDs
Yuefei Cai(蔡月飞), Jie Bai(白洁), and Tao Wang(王涛). Chin. Phys. B, 2023, 32(1): 018508.
[5] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[6] Effect of heavy ion irradiation on the interface traps of AlGaN/GaN high electron mobility transistors
Zheng-Zhao Lin(林正兆), Ling Lü(吕玲), Xue-Feng Zheng(郑雪峰), Yan-Rong Cao(曹艳荣), Pei-Pei Hu(胡培培), Xin Fang(房鑫), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2022, 31(3): 036103.
[7] Protection of isolated and active regions in AlGaN/GaN HEMTs using selective laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Qing Guo(郭清), and Kuang Sheng(盛况). Chin. Phys. B, 2021, 30(9): 097302.
[8] Structural modulation and physical properties of cobalt-doped layered La2M5As3O2 (M= Cu, Ni) compounds
Lei Yang(杨蕾), Yan-Peng Song(宋艳鹏), Jun-Jie Wang(王俊杰), Xu Chen(陈旭), Hui-Jing Du(杜会静), and Jian-Gang Guo(郭建刚). Chin. Phys. B, 2021, 30(7): 076106.
[9] Modeling, simulations, and optimizations of gallium oxide on gallium-nitride Schottky barrier diodes
Tao Fang(房涛), Ling-Qi Li(李灵琪), Guang-Rui Xia(夏光睿), and Hong-Yu Yu(于洪宇). Chin. Phys. B, 2021, 30(2): 027301.
[10] Effects of water on the structure and transport properties of room temperature ionic liquids and concentrated electrolyte solutions
Jinbing Zhang(张晋兵), Qiang Wang(王强), Zexian Cao(曹则贤). Chin. Phys. B, 2020, 29(8): 087804.
[11] Effect of overdrive voltage on PBTI trapping behavior in GaN MIS-HEMT with LPCVD SiNx gate dielectric
Tao-Tao Que(阙陶陶), Ya-Wen Zhao(赵亚文), Liu-An Li(李柳暗), Liang He(何亮), Qiu-Ling Qiu(丘秋凌), Zhen-Xing Liu(刘振兴), Jin-Wei Zhang(张津玮), Jia Chen(陈佳), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬). Chin. Phys. B, 2020, 29(3): 037201.
[12] Evaluation of stress voltage on off-state time-dependent breakdown for GaN MIS-HEMT with SiNx gate dielectric
Tao-Tao Que(阙陶陶), Ya-Wen Zhao(赵亚文), Qiu-Ling Qiu(丘秋凌), Liu-An Li(李柳暗), Liang He(何亮), Jin-Wei Zhang(张津玮), Chen-Liang Feng(冯辰亮), Zhen-Xing Liu(刘振兴), Qian-Shu Wu(吴千树), Jia Chen(陈佳), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Yun-Liang Rao(饶运良), Zhi-Yuan He(贺致远), and Yang Liu (刘扬)†. Chin. Phys. B, 2020, 29(10): 107201.
[13] Fabrication and characterization of one-port surface acoustic wave resonators on semi-insulating GaN substrates
Xue Ji(吉雪), Wen-Xiu Dong(董文秀), Yu-Min Zhang(张育民), Jian-Feng Wang(王建峰), Ke Xu(徐科). Chin. Phys. B, 2019, 28(6): 067701.
[14] Responsivity and noise characteristics of AlGaN/GaN-HEMT terahertz detectors at elevated temperatures
Zhi-Feng Tian(田志锋), Peng Xu(徐鹏), Yao Yu(余耀), Jian-Dong Sun(孙建东), Wei Feng(冯伟), Qing-Feng Ding(丁青峰), Zhan-Wei Meng(孟占伟), Xiang Li(李想), Jin-Hua Cai(蔡金华), Zhong-Xin Zheng(郑中信), Xin-Xing Li(李欣幸), Lin Jin(靳琳), Hua Qin(秦华), Yun-Fei Sun(孙云飞). Chin. Phys. B, 2019, 28(5): 058501.
[15] Mechanism of Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures via laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Kuang Sheng(盛况). Chin. Phys. B, 2019, 28(3): 037302.
No Suggested Reading articles found!