Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 117304    DOI: 10.1088/1674-1056/ade4ae
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A convenient ultrasonic path for van der Waals heterostructure construction: Study on MoS2/graphene as an example

Wen Zhang(张文)1,†, Mingyang Gao(高铭阳)2,4,†,‡, Jun Guo(郭俊)1, Licun Fu(付立存)3, Ling Liu(刘玲)1, Jing Wang(王京)1, and Teng Ma(马腾)1
1 Mechanical and Electrical Engineering Department, Inner Mongolia Technical College of Mechanics & Electrics, Hohhot 015501, China;
2 School of Electronic Information, Northwest University, Xi'an 710127, China;
3 School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China;
4 School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
Abstract  Ultrasound is a powerful tool in materials processing, yet its application in constructing van der Waals (vdW) heterostructures remains under-explored. In this study, MoS2 and graphene — two widely studied 2D materials — were successfully assembled into vdW heterostructures via a convenient ultrasound-driven self-assembly approach. The morphology of the heterostructures was characterized by scanning electron microscopy (SEM), while their structural and compositional features were confirmed through x-ray diffraction (XRD), Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS). Red-shifted Raman peaks and decreased binding energies in XPS spectra provided strong evidence of successful heterostructure formation. A three-stage assembly mechanism — comprising dispersion, assembly, and adjustment — is proposed, with acoustic cavitation playing a key role in driving the process. This study not only demonstrates the feasibility of synthesizing 2D heterostructures via an ultrasonic route but also lays a foundation for future scalable, energy-efficient fabrication strategies.
Keywords:  van der Waals heterostructure      ultrasound assembly      MoS2      graphene  
Received:  23 March 2025      Revised:  04 May 2025      Accepted manuscript online:  16 June 2025
PACS:  73.63.Rt (Nanoscale contacts)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  81.16.Dn (Self-assembly)  
Fund: This study was supported by the China Inner Mongolia Autonomous Region Directly-Undergraduate Universities Basic Research Business Fund Project: ‘Environmental Protection Equipment R&D’ Shared Technology and Skills Innovation Platform Construction (Grant No. NJDYWF2301).
Corresponding Authors:  Mingyang Gao     E-mail:  mingyanggao6@163.com

Cite this article: 

Wen Zhang(张文), Mingyang Gao(高铭阳), Jun Guo(郭俊), Licun Fu(付立存), Ling Liu(刘玲), Jing Wang(王京), and Teng Ma(马腾) A convenient ultrasonic path for van der Waals heterostructure construction: Study on MoS2/graphene as an example 2025 Chin. Phys. B 34 117304

[1] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 aac9439
[2] Wang W, Cheng B, Luo G Q, Yu J Ga and Cao S W 2024 Materials Today 81 137[3] Goel N, Utkarsha, Kushwaha A, Kwoka M, Kumar R and Kumar M 2024 Journal of Materials Chemistry A 12 5642
[4] Liu W J, Wu Y F, Bao X Z D, Sun L, Xie Y E and Chen Y P 2025 Advanced Functional Materials 04 2421525
[5] Carvalho A, Wang M, Zhu X, Rodin A S, Su H B and Castro Neto H C 2016 Nature Reviews Materials 1 16061
[6] Chen H L,Wen XW, Zhang J,Wu T M, Gong Y J, Zhang X, Yuan J T, Yi C Y, Lou J, Ajayan PM, ZhuangW, Zhang G Y and Zheng J R 2016 Nat. Commun. 7 12512
[7] Tang S W, Ai P, Bai S L, Wan D, Li X D, Guo W R, Zhen T and Wang H 2024 Materials Today Physics 43 101398
[8] Guo H W, Hu Z, Liu Z B and Tian J G 2021 Advanced Functional Materials 31 2007810
[9] Rafi R, Rahulan K M, Flower N A L, Abith M, Chidambaram S G T and Rajendran A S 2024 ACS Applied Nano Materials 7 11097
[10] de Sousa B P, Estrada A C, Trindade T and Fateixa S 2025 Applied Surface Science 689 162492
[11] Jacobo J R, Olea-Mejía O F, Martínez-Hernández A L and Carlos V S 2024 FlatChem 45 100654
[12] Gao H G, Shi R, Shao Y T, Liu Y N, Zhu Y F, Zhang J G, Hu X H, Li L Q and Ba Z X 2022 J. Alloys Compd. 895 162635
[13] Guan X S, Zhang X C, Zhang C M, Li R, Liu J X, Wang Y F, Wang Y W, Fan C M and Li Z 2023 Journal of Colloid and Interface Science 644 426
[14] Mei J, Liao T and Sun Z Q 2022 Energy & Environmental Materials 5 115
[15] Xiang T, Chen F X, Li X L, Wang X D, Yan Y L and Wang L S 2023 Chin. Phys. B 32 117301
[16] Xie N H, ChenWZ, Ning Y and Zeng X J 2024 Materials Today Nano 28 100529
[17] Akimov A V, Neukirch A J and Prezhdo O V 2013 Chem. Rev. 113 4496
[18] Kim S, Lee C, Lim Y S and Shim J H 2021 ACS Omega 6 278
[19] Rathi S, Lee I, Lim D, Wang J W, Ochiai Y, Aoki N, Watanabe K, Taniguchi T, Lee GH, Yu Y J, Kim P and Kim G H 2015 Nano Lett. 15 5017
[20] Wu F F, Li L, Xu Q L, Liu L, Yuan Y L, Zhao J J, Huang Z H, Zan X Z, Watanabe K, Taniguchi T, Shi D X, Xian L D, Yang W, Du L J and Zhang G Y 2023 Chin. Phys. Lett. 40 047303
[21] Sheng Q L, Qiao X J, Zhou M, Yue T L and Zheng J B 2019 Handbook of Graphene Set: Biosensors and Advanced Sensors (New York: Wiley) 535
[22] Swain G, Sultana S and Parida K 2021 Nanoscale 13 9908
[23] Cao Q, Dai J J, Hao Z T, Paulus B, Eigler S and Chen X 2024 Angewandte Chemie International Edition 63 202415922
[24] Zhang X W, Biekert N, Choi S, Naylor C H, De-Eknamkul C, Huang W Z, Zhang X J, Zheng X R, Wang D K, Johnson A T C and Cubukcu E 2018 Nano Lett. 18 957
[25] Dastidar M G, Basu N, Kao I H, Katoch J, Nayak P K, Singh S and Bhallamudi V P 2024 Nanoscale 16 19413
[26] Bhat S, Banday J and Wahid M 2023 Energy Fuels 37 6012
[27] Song S, Lyu J, Qin L, Wang Z, Gong J and Yang S Y 2024 Phys. Rev. B 110 125407
[28] Gao M Y, Zhang Z Y, Zhang W, Yao X, Cao Z, Cao Q Z, Zhu H Y and Zhao W 2021 FlatChem 30 100312
[29] Hou M Z, Qiu Y T, Yan G F S, Wang J M, Zhan D, Liu X, Gao J C and Lai L F 2019 Nano Energy 62 299
[30] Zhang J, Huang G Z, Zeng J H, Jiang X D, Shi Y X, Lin S J, Chen X, Wang H B, Kong Z, Xi J H and Ji Z G 2019 J. Alloys Compd. 775 726
[31] Kong D S, Wang H T, Cha J J, Pasta M, Koski K J, Yao J and Cui Y 2013 Nano Lett. 13 1341
[32] Pandey A, Mukherjee A, Chakrabarty S, Chanda D and Basu S 2019 ACS Applied Materials & Interfaces 11 42094
[33] Liu Y, Zhou Y, Zhang H, Ran F R, Zhao W H, Wang L, Pei C J, Zhang J D, Huang X and Li H 2019 Frontiers of Physics 14 13607
[34] Nanda S S, Kim M J, Yeom K S, An S S A, Ju H and Yi D K 2016 TrAC Trends in Analytical Chemistry 80 125
[35] Suslick K S 1990 Science 247 1439
[36] Brenner C R 1995 Cavitation and Bubble Dynamics (Oxford: Oxford University Press)
[37] Xu H X, Zeiger B W and Suslick K S 2013 Chem. Soc. Rev. 42 2555
[38] Leighton T G 1994 The Acoustic Bubble (London: Academic Press)
[39] Wang P Q, Jia C C, Huang Y and Duan X F 2021 Matter 4 552
[40] Flint E B and Suslick K S 1991 Science 253 1397
[41] Suslick K S, Eddingsaas N C, Flannigan D J, Hopkins S D and Xu H X 2018 Accounts of Chemical Research 51 2169
[42] Flannigan D J and Suslick K S 2005 Nature 434 52
[43] Didenko Y T and Suslick K S 2002 Nature 418 394
[44] Didenko Y T, McNamara W B and Suslick K S 2000 Nature 407 877
[45] McNamara W B, Didenko Y T and Suslick K S 2000 J. Am. Chem. Soc. 122 8563
[46] Lee J H, Avsar A, Jung J, Tan J Y, Watanabe K, Taniguchi T, Natarajan S, Eda G, Adam S, Neto A H C and O zyilmaz B 2015 Nano Lett. 15 319
[47] Tanabe T, Tang C, Sato Y and Oyama Y 2018 J. Appl. Phys. 123 245107
[48] Lauterborn W and Kurz T 2010 Reports on Progress in Physics 73 106501
[49] Vogel A and Lauterborn W 1988 Appl. Opt. 27 1869
[50] Vogel A, Hentschel W, Holzfuss J and Lauterborn W 1986 Klinische Monatsblatter Fur Augenheilkunde 189 308
[51] Phan T T T, Nguyen T T H, Huu H T, Truong T T, Nguyen L T, Nguyen V T, Tran V A, Nguyen T L, Nguyen H L and Vo V 2021 Journal of Nanomaterials 2021 9941202
[52] Zhang L, Sun L, Liu S, Huang Y, Xu K and Ma F 2016 RSC Advanced 65 60318
[53] Wu M, Li L, Xue Y, Xu G, Tang L, Liu N and Huang W 2018 Applied Catalysis B: Environmental 228 103
[54] Venkatesh G, Elavarasan N, Srinivasan M, Palanisamy G, Macadangdang R R Jr., Vignesh S, Ramasamy P, Ali H E, Shkir M and Ahmad Z 2022 International Journal of Hydrogen Energy 47 11863
[1] Giant thermal rectification beyond structural asymmetry via current-induced nonreciprocity effects
Jiayao Zhang(张佳瑶), Yu Hao(郝雨), Bowen Xiong(熊博文), Shanhe Su(苏山河), and Zhimin Yang(杨智敏). Chin. Phys. B, 2025, 34(9): 094402.
[2] Acoustic detection of high-resistance states in gated bilayer graphene devices
Guo-Quan Qin(秦国铨), Yi-Bo Wang(王奕博), Guo-Sheng Lei(雷国盛), Zhuo-Zhi Zhang(张拙之), Xiang-Xiang Song(宋骧骧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2025, 34(9): 097201.
[3] Strain tuning of the transport gap and magnetic order in Dirac fermion systems
Jingyao Meng(孟敬尧), Zenghui Fan(范增辉), Miao Ye(叶苗), and Tianxing Ma(马天星). Chin. Phys. B, 2025, 34(9): 098101.
[4] Anomalous ultrafast thermalization of photoexcited carriers in two-dimensional materials induced by orbital coupling
Zhuoqun Wen(文卓群), Haiyu Zhu(诸海渝), Wen-Hao Liu(刘文浩), Zhi Wang(王峙), Wen Xiong(熊稳), and Xingzhan Wei(魏兴战). Chin. Phys. B, 2025, 34(7): 077103.
[5] Laser power-induced Fermi-level shift in graphene/Al2O3 under ambient atmosphere: Toward neutralizing unintentional graphene doping
Jamal Q. M. Almarashi, Mohamed K. Zayed, Hesham Fares, Heba Sukar, Takao Ono, Yasushi Kanai, and Mohamed Almokhtar. Chin. Phys. B, 2025, 34(6): 066302.
[6] Finite element analysis of the impact of graphene filler dispersion on local hotspots in HMX-based PBX explosives
Xuanyi Yang(杨烜屹), Xin Huang(黄鑫), Chaoyang Zhang(张朝阳), Yanqing Wang(王延青), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2025, 34(5): 054401.
[7] Synthesis of two-dimensional diamond by phase transition from graphene at atmospheric pressure
Songyang Li(李松洋), Zhiguang Zhu(朱志光), Youzhi Zhang(张有志), Chengke Chen(陈成克), and Xiaojun Hu(胡晓君). Chin. Phys. B, 2025, 34(5): 058101.
[8] Quantum anomalous Hall effect in twisted bilayer graphene
Wen-Xiao Wang(王文晓), Yi-Wen Liu(刘亦文), and Lin He(何林). Chin. Phys. B, 2025, 34(4): 047301.
[9] Anomalous Hall effect in Bernal tetralayer graphene enhanced by spin-orbit interaction
Zhuangzhuang Qu(曲壮壮), Zhihao Chen(陈志豪), Xiangyan Han(韩香岩), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Wenjun Zhao(赵文俊), Kenji Watanabe, Takashi Taniguchi, Zhi-Gang Cheng(程智刚), Zizhao Gan(甘子钊), and Jianming Lu(路建明). Chin. Phys. B, 2025, 34(3): 037201.
[10] Thickness-dependent magnetic property of FeNi thin film grown on flexible graphene substrate
Suixin Zhan(詹遂鑫), Shaokang Yuan(袁少康), Yuming Bai(白宇明), Fu Liu(刘福), Bohan Zhang(张博涵), Weijia Han(韩卫家), Tao Wang(王韬), Shengxiang Wang(汪胜祥), and Cai Zhou(周偲). Chin. Phys. B, 2025, 34(2): 027503.
[11] Giant enhancement of negative friction by resonant coupling between localized surface phonon polaritons and graphene plasmonics
Kaipeng Liu(柳开鹏), Shuai Zhou(周帅), Shiwei Dai(戴士为), and Lixin Ge(葛力新). Chin. Phys. B, 2025, 34(1): 014202.
[12] Effect of interlayer bonded bilayer graphene on friction
Yao-Long Li(李耀隆), Zhen-Guo Tian(田振国), Hai-Feng Yin(尹海峰), and Ren-Liang Zhang(张任良). Chin. Phys. B, 2024, 33(8): 086103.
[13] Massive Dirac particles based on gapped graphene with Rosen-Morse potential in a uniform magnetic field
A. Kalani, Alireza Amani, and M. A. Ramzanpour. Chin. Phys. B, 2024, 33(8): 080303.
[14] Controlled fabrication of freestanding monolayer SiC by electron irradiation
Yunli Da(笪蕴力), Ruichun Luo(罗瑞春), Bao Lei(雷宝), Wei Ji(季威), and Wu Zhou(周武). Chin. Phys. B, 2024, 33(8): 086802.
[15] Wafer-scale 30° twisted bilayer graphene epitaxially grown on Cu0.75Ni0.25 (111)
Peng-Cheng Ma(马鹏程), Ao Zhang(张翱), Hong-Run Zhen(甄洪润), Zhi-Cheng Jiang(江志诚), Yi-Chen Yang(杨逸尘), Jian-Yang Ding(丁建阳), Zheng-Tai Liu(刘正太), Ji-Shan Liu(刘吉山), Da-Wei Shen(沈大伟), Qing-Kai Yu(于庆凯), Feng Liu(刘丰), Xue-Fu Zhang(张学富), and Zhong-Hao Liu(刘中灏). Chin. Phys. B, 2024, 33(6): 066101.
No Suggested Reading articles found!