Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 094201    DOI: 10.1088/1674-1056/adcd46
Special Issue: TOPICAL REVIEW — Exciton physics: Fundamentals, materials and devices
SPECIAL TOPIC — Exciton physics: Fundamentals, materials and devices Prev   Next  

Exciton dynamics and random lasing in surface-passivated CdSe/CdSeS core/crown nanoplatelets

Huan Liu(刘欢)†, Puning Wang(王谱宁)†, and Rui Chen(陈锐)‡
Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Abstract  CdSe nanoplatelets (NPLs) are promising candidates for on-chip light sources, yet their performance is hindered by surface defects and inefficient optical gain. Herein, we demonstrate that CdSeS crown passivation significantly enhances the photophysical property of CdSe NPLs. Laser spectroscopy techniques reveal suppressed electronic and hole trapping at lateral surfaces, leading to a 4.2-fold increase in photoluminescence quantum yield and a shortened emission lifetime from 13.5 to 4.8 ns. In addition, amplified spontaneous emission is achieved under nanosecond pulse pumping, with thresholds of 0.75 to 0.16 mJ/cm$^{2}$ for CdSe and CdSe/CdSeS NPLs, respectively. By integrating CdSe/CdSeS NPLs with high-refractive-index SiO$_{2}$ scatters, coherent random lasing is realized at a threshold of 0.21 mJ/cm$^{2}$. These findings highlight the critical role of lateral surface passivation in optimizing optical gain and pave the way for low-cost, multifunctional nanophotonic devices.
Keywords:  CdSe nanoplatelets      core/crown heterostructures      surface passivation      amplified spontaneous emission      random lasing  
Received:  14 March 2025      Revised:  03 April 2025      Accepted manuscript online:  16 April 2025
PACS:  42.62.Fi (Laser spectroscopy)  
  42.55.-f (Lasers)  
  61.46.Df (Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))  
Fund: This work is supported by the National Natural Science Foundation of China (Grant No. 62174079), Guangdong Provincial Quantum Science Strategic Initiative (Grant No. GDZX2404006), Science, Technology and Innovation Commission of Shenzhen Municipality (Grant No. JCYJ20220530113015035).
Corresponding Authors:  Rui Chen     E-mail:  chenr@sustech.edu.cn

Cite this article: 

Huan Liu(刘欢), Puning Wang(王谱宁), and Rui Chen(陈锐) Exciton dynamics and random lasing in surface-passivated CdSe/CdSeS core/crown nanoplatelets 2025 Chin. Phys. B 34 094201

[1] Zhang D G, Jian L Y, Tseng Z L, Cheng H M and Lin J H 2021 Nanoscale 13 3246
[2] Li X, Wang Y, Sun H and Zeng H 2017 Adv. Mater. 29 1701185
[3] Meng B, Zhang X, Kang Y, Yu X, Wang P, Wang S, Tang J, Hao Q, Wei Z and Chen R 2024 Nanoscale 16 17488
[4] Yang J, Liu Z, Pi M, Lin H, Zeng F, Bian Y, Shi T, Du J, Leng Y and Tang X 2020 Adv. Opt. Mater. 8 2000290
[5] Padiyakkuth N, Thomas S, Antoine R and Kalarikkal N 2022 Mater. Adv. 3 6687
[6] Sapienza R 2022 Nat. Phys. 18 976
[7] Liu H, Hao J, Li J, Cheng J, Gao Y, Lin X, Wang K and He T 2020 J. Phys. Chem. C 124 27840
[8] Zhang L, Yang H, Yu B, Tang Y, Zhang C, Wang X, Xiao M, Cui Y and Zhang J 2020 Adv. Opt. Mater. 8 1901615
[9] Liu H, Lin D, Wang P, He T and Chen R 2024 Chip 3 100073
[10] Pietryga J M, Park Y S, Lim J, Fidler A F, Bae W K, Brovelli S and Klimov V I 2016 Chem. Rev. 116 10513
[11] Diroll B T, Guzelturk B, Po H, Dabard C, Fu N, Makke L, Lhuillier E and Ithurria S 2023 Chem. Rev. 123 3543
[12] Liu H, Chen P, Cui Y, Gao Y, Cheng J, He T and Chen R 2023 Adv. Opt. Mater. 11 2300425
[13] Park Y S, Bae W K, Baker T, Lim J and Klimov V I 2015 Nano Lett. 15 7319
[14] Park Y S, Bae W K, Padilha L A, Pietryga J M and Klimov V I 2014 Nano Lett. 14 396
[15] Wu K, Lim J and Klimov V I 2017 ACS Nano 11 8437
[16] Gao Y, Liu H, Li J, Deng X, Hu W, Xiao S, Qiu X, Lin X, Wang K and He T 2020 J. Phys. Chem. C 124 7994
[17] Lo S S, Mirkovic T, Chuang C H, Burda C and Scholes G D 2011 Adv. Mater. 23 180
[18] Liu H, Chen P, Zhang X, Wang X, He T and Chen R 2023 Nanoscale 15 14140
[19] Hu A, Bai P, Zhu Y, Song Z, Wang R, Zheng J, Yao Y, Zhang Q, Ding Z, Gao P, Sui X, Liu X and Gao Y 2022 Adv. Opt. Mater. 10 2200469
[20] Duan R, Zhang Q, Thung Y T, Zhou X, Yin T, Ao Y, Xiao L, Zhang Z, Lee C X X, Ren T, Demir H V, Lew W S, Zhang B and Sun H 2025 Adv. Mater. 37 2416635
[21] Yu J, Zhang C, Pang G, Sun X W and Chen R 2019 ACS Appl. Mater. Interfaces 11 41821
[22] Dufour M, Qu J, Greboval C, Méthivier C, Lhuillier E and Ithurria S 2019 ACS Nano 13 5326
[23] Prudnikau A, Chuvilin A and Artemyev M 2013 J. Am. Chem. Soc. 135 14476
[24] Coropceanu I, Rossinelli A, Caram J R, Freyria F S and Bawendi M G 2016 ACS Nano 10 3295
[25] Purcell-Milton F, Visheratina A K, Kuznetsova V A, Ryan A, Orlova A O and Gun’ko Y K 2017 ACS Nano 11 9207
[26] Liu H,Wang P, Huang Z,Wang S, Ren Z, Liu J, He T and Chen R 2025 J. Phys. Chem. Lett. 16 1567
[27] Yang W, Yang Y, Kaledin A L, He S, Jin T, McBride J R and Lian T 2020 Chem. Sci. 11 5779
[28] Wang Y, Li X, Zhao X, Xiao L, Zeng H and Sun H 2016 Nano Lett. 16 448
[29] Grim J Q, Christodoulou S, Di Stasio F, Krahne R, Cingolani R, Manna L and Moreels I 2014 Nat. Nanotechnol. 9 891
[30] Guzelturk B, Kelestemur Y, Olutas M, Delikanli S and Demir H V 2014 ACS Nano 8 6599
[31] Li M, Zhi M, Zhu H, Wu W Y, Xu Q H, Jhon M H and Chan Y 2015 Nat. Commun. 6 8513
[32] Wang Y, Ta V D, Gao Y, He T C, Chen R, Mutlugun E, Demir H V and Sun H D 2014 Adv. Mater. 26 2954
[33] Duan R, Zhang Z, Xiao L, Zhao X, Thung Y T, Ding L, Liu Z, Yang J, Ta V D and Sun H 2022 Adv. Mater. 34 2108884
[34] Ye L, Niu D, Lu C, Gu B and Xu S 2025 Opt. Laser Technol. 182 112124
[35] Lin W, Wang C, Tong B, Sun B, Zhao X and Gao Y 2023 Mater. Lett. 349 134789
[36] Cao H 2003 Waves Random Media 13 R1
[37] Cerdan L, Enciso E, Martin V, Banuelos J, Lopez-Arbeloa I, Costela A and Garcia-Moreno I 2012 Nat. Photon. 6 621
[1] Impact of surface passivation on the electrical stability of strained germanium devices
Zong-Hu Li(李宗祜), Mao-Lin Wang(王茂粼), Zhen-Zhen Kong(孔真真), Gui-Lei Wang(王桂磊), Yuan Kang(康原), Yong-Qiang Xu(徐永强), Rui Wu(吴睿), Tian-Yue Hao(郝天岳), Ze-Cheng Wei(魏泽成), Bao-Chuan Wang(王保传), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2025, 34(9): 090305.
[2] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[3] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[4] Pump pulse characteristics of quasi-continuous-wave diode-side-pumped Nd:YAG laser
Zexin Song(宋泽鑫), Qi Bian(卞奇), Yu Shen(申玉), Keling Gong(龚柯菱), Nan Zong(宗楠), Qingshuang Zong(宗庆霜), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(5): 054208.
[5] Demonstration of multi-Watt all-fiber superfluorescent source operating near 980 nm
Yankun Ren(任彦锟), Jianqiu Cao(曹涧秋), Hanyuan Ying(应汉辕), Heng Chen(陈恒), Zhiyong Pan(潘志勇), Shaojun Du(杜少军), Jinbao Chen(陈金宝). Chin. Phys. B, 2018, 27(3): 030703.
[6] Crystalline silicon surface passivation investigated by thermal atomic-layer-deposited aluminum oxide
Cai-Xia Hou(侯彩霞), Xin-He Zheng(郑新和), Rui Jia(贾锐), Ke Tao(陶科), San-Jie Liu(刘三姐), Shuai Jiang(姜帅), Peng-Fei Zhang(张鹏飞), Heng-Chao Sun(孙恒超), Yong-Tao Li(李永涛). Chin. Phys. B, 2017, 26(9): 098103.
[7] Random lasing in dye-doped polymer dispersed liquid crystal film
Rina Wu(乌日娜), Rui-xin Shi(史瑞新), Xiaojiao Wu(邬小娇), Jie Wu(吴杰), Qin Dai(岱钦). Chin. Phys. B, 2016, 25(9): 094209.
[8] Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization
Lei Wang(王雷), Meng Wang(王萌), Mingchao Yang(杨明朝), Li-Jie Shi(石丽洁), Luogen Deng(邓罗根 ), Huai Yang(杨槐). Chin. Phys. B, 2016, 25(9): 094217.
[9] Theoretical study of amplified spontaneous emission intensity and bandwidth reduction in polymer
A. Hariri, S. Sarikhani. Chin. Phys. B, 2015, 24(4): 043201.
[10] Effect of different metal-backed waveguides on amplified spontaneous emission
Zhang Bo (张波), Hou Yan-Bing (侯延冰), Lou Zhi-Dong (娄志东), Teng Feng (滕枫), Liu Xiao-Jun (刘小君), Hu Bing (胡兵), Meng Ling-Chuan (孟令川), Wu Wen-Bin (武文彬 ). Chin. Phys. B, 2012, 21(8): 084212.
[11] The stimulated Raman scattering competition between solute and solvent in Rhodamine B solution
Fang Wen-Hui(房文汇), Li Zuo-Wei(里佐威), Sun Cheng-Lin(孙成林), Li Zhan-Long(李占龙), Song Wei(宋薇), Men Zhi-Wei(门志伟), and He Li-Qiao(何丽桥) . Chin. Phys. B, 2012, 21(3): 034211.
[12] Amplified spontaneous emission from metal-backed poly[2-methoxy-5-(2'-ethylhexyloxy)-1, 4-phenylenevinylene] film
Zhang Bo (张波), Hou Yan-Bing (侯延冰), Teng Feng (滕枫), Lou Zhi-Dong (娄志东), Liu Xiao-Jun (刘小君), Hu Bing (胡兵), Wu Wen-Bin (武文彬). Chin. Phys. B, 2011, 20(7): 077803.
[13] Solvent-vapour treatment induced performance enhancement of amplified spontaneous emission based on poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1, 4-phenylene vinylene]
Zhang Bo(张波), Hou Yan-Bing(侯延冰), Teng Feng(滕枫), Lou Zhi-Dong(娄志东), Liu Xiao-Jun(刘小君), Hu Bing(胡兵), and Wu Wen-Bin(武文彬). Chin. Phys. B, 2011, 20(5): 054208.
[14] Measurement of the carrier recovery time in SOA based on four-wave mixing on narrow-band ASE spectrum
Cheng Cheng(程乘), Zhang Xin-Liang(张新亮), Zhang Yu(张羽), Liu Lei(刘磊), and Huang De-Xiu(黄德修). Chin. Phys. B, 2010, 19(10): 104206.
[15] Broadband amplified spontaneous emission from Er3+-doped single-mode tellurite fibre
Chen Dong-Dan(陈东丹), Zhang Qin-Yuan(张勤远), Liu Yue-Hui(刘粤惠), Xu Shan-Hui(徐善辉), Yang Zhong-Min(杨中民), Deng Zai-De(邓再德), and Jiang Zhong-Hong(姜中宏). Chin. Phys. B, 2006, 15(12): 2902-2905.
No Suggested Reading articles found!