Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 017502    DOI: 10.1088/1674-1056/ae181c
RAPID COMMUNICATION Prev  

Temperature-dependent magnetotransport properties of CoFe2O4/Pt heterostructure

Haomang He(何浩茫), Ruijie Xu(徐睿劼), Anke Song(宋安柯), Zhongqiang Chen(陈中强), and Xuefeng Wang(王学锋)
State Key Laboratory of Spintronics, Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  We report on the growth of CoFe2O4/Pt heterostructure and their magnetotransport properties. The magnetoresistance under high magnetic fields exhibits a sign change when the temperature increases from 5 K to 10 K. The anomalous Hall resistance decreases as the temperature increases. Furthermore, angle-dependent magnetoresistance indicates that the observed magnetotransport behaviors originate from the competition between the spin Hall magnetoresistance and magnetic proximity effect.
Keywords:  magnetotransport      magnetoresistance      anomalous Hall effect      CoFe2O4/Pt heterostructure      magnetic proximity effect  
Received:  01 September 2025      Revised:  11 October 2025      Accepted manuscript online:  28 October 2025
PACS:  75.30.Ds (Spin waves)  
  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
  31.15.aq (Strongly correlated electron systems: generalized tight-binding method)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 62525406, T2394473, 624B2070, and 62274085), the National Key Research and Development Program of China (Grant No. 2022YFA1402404), and the Innovation Program for Quantum Science and Technology of China (Grant No. 2024ZD0301300).
Corresponding Authors:  Xuefeng Wang     E-mail:  xfwang@nju.edu.cn

Cite this article: 

Haomang He(何浩茫), Ruijie Xu(徐睿劼), Anke Song(宋安柯), Zhongqiang Chen(陈中强), and Xuefeng Wang(王学锋) Temperature-dependent magnetotransport properties of CoFe2O4/Pt heterostructure 2026 Chin. Phys. B 35 017502

[1] Adachi H, Uchida K, Saitoh E and Maekawa S 2013 Rep. Prog. Phys. 76 036501
[2] Manchon A, Zelezny J, Miron I M, Jungwirth T, Sinova J, Thiaville A, Garello K and Gambardella P 2019 Rev. Mod. Phys. 91 035004
[3] Ando K, Takahashi S, Ieda J, Kajiwara Y, Nakayama H, Yoshino T, Harii K, Fujikawa Y, Matsuo M, Maekawa S and Saitoh E 2011 J. Appl. Phys. 109 103913
[4] Vaz D C, Barthel emy A and Bibes M 2018 Jpn. J. Appl. Phys. 57 0902A4
[5] Ando K, Takahashi S, Harii K, Sasage K, Ieda J, Maekawa S and Saitoh E 2008 Phys. Rev. Lett. 101 036601
[6] Kimura T, Otani Y, Sato T, Takahashi S and Maekawa S 2007 Phys. Rev. Lett. 98 156601
[7] Valenzuela S O and Tinkham M 2006 Nature 442 176
[8] Hahn C, de Loubens G, Klein O, Viret M, Naletov V V and Ben Youssef J 2013 Phys. Rev. B 87 174417
[9] Vlietstra N, Shan J, Castel V, Ben Youssef J, Bauer G E W and van Wees B J 2013 Appl. Phys. Lett. 103 032401
[10] Vlietstra N, Shan J, Castel V, van Wees B J and Ben Youssef J 2013 Phys. Rev. B 87 184421
[11] Velez S, Bedoya-Pinto A, Yan W J, Hueso L E and Casanova F 2016 Phys. Rev. B 94 174405
[12] Chen Y T, Takahashi S, Nakayama H, Althammer M, Goennenwein S T B, Saitoh E and Bauer G E W 2013 Phys. Rev. B 87 144411
[13] Nakayama H, Althammer M, Chen Y T, Uchida K, Kajiwara Y, Kikuchi D, Ohtani T, Geprags S, Opel M, Takahashi S, Gross R, Bauer G E W, Goennenwein S T B and Saitoh E 2013 Phys. Rev. Lett. 110 206601
[14] Avci C O, Quindeau A, Pai C F, Mann M, Caretta L, Tang A S, Onbasli M C, Ross C A and Beach G S D 2017 Nat. Mater. 16 309
[15] Wu H, Huang L, Fang C, Yang B S, Wan C H, Yu G Q, Feng J F, Wei H X and Han X F 2018 Phys. Rev. Lett. 120 097205
[16] Yanagihara H, Uwabo K, Minagawa M, Kita E and Hirota N 2011 J. Appl. Phys. 109 07C122
[17] Li Z L, Lyu Y, Ran Z, Wang Y J, Zhang Y, Lu N P, Wang M, Sassi M, Ha T D, N’Diaye A T, Shafer P, Pearce C, Rosso K, Arenholz E, Juang J Y, He Q, Chu Y H, Luo W D and Yu P 2023 Adv. Funct. Mater. 33 2212298
[18] Moitra D, Hazra S, Ghosh B K, Jani R K, Patra M K, Vadera S R and Ghosh N N 2015 RSC Adv. 5 51130
[19] Khan I and Hong J 2024 J. Mater. Chem. C 12 17658
[20] Isasa M, Velez S, Sagasta E, Bedoya-Pinto A, Dix N, S anchez F, Hueso L E, Fontcuberta J and Casanova F 2016 Phys. Rev. Appl. 6 034007
[21] Slonczewski J C 1958 Phys. Rev. 110 1341
[22] Suzuki Y, vanDover R B, Gyorgy E M, Phillips J M, Korenivski V, Werder D J, Chen C H, Cava R J, Krajewski J J, Peck W F and Do K B 1996 Appl. Phys. Lett. 68 714
[23] Isasa M, Bedoya-Pinto A, Velez S, Golmar F, S anchez F, Hueso L E, Fontcuberta J and Casanova F 2014 Appl. Phys. Lett. 105 142402
[24] Tainosho T, Niizeki T, Inoue J, Sharmin S, Kita E and Yanagihara H 2017 AIP Adv. 7 055936
[25] Collet M, Mattana R, Moussy J B, Ollefs K, Collin S, Deranlot C, Anane A, Cros V, Petroff F, Wilhelm F and Rogalev A 2017 Appl. Phys. Lett. 111 202401
[26] Vasili H B, Gamino M, Gazquez J, Sanchez F, Valvidares M, Gargiani P, Pellegrin E and Fontcuberta J 2018 ACS Appl. Mater. Interfaces 10 12031
[27] Amamou W, Pinchuk I V, Trout A H, Williams R E A, Antolin N, Goad A, O’Hara D J, Ahmed A S, Windl W, McComb D W and Kawakami R K 2018 Phys. Rev. Mater. 2 011401
[28] Peddis D, Cannas C, Piccaluga G, Agostinelli E and Fiorani D 2010 Nanotechnology 21 125705
[29] Kim D H, Lee H J, Kim G, Koo Y S, Jung J H, Shin H J, Kim J Y and Kang J S 2009 Phys. Rev. B 79 033402
[30] Kotani A 2008 Phys. Rev. B 78 195115
[31] Chen J G 1997 Surf. Sci. Rep. 30 1
[32] Chen C T, Idzerda Y U, Lin H J, Smith N V, Meigs G, Chaban E, Ho G H, Pellegrin E and Sette F 1995 Phys. Rev. Lett. 75 152
[33] Wu R Q and Freeman A J 1994 Phys. Rev. Lett. 73 1994
[34] Guo G Y, Ebert H, Temmerman W M and Durham P J 1994 Phys. Rev. B 50 3861
[35] Wu H, Zhang Q, Wan C, Ali S S, Yuan Z, You L, Wang J, Choi Y S and Han X 2015 IEEE Trans. Magn. 51 4100104
[36] Guo J Q, Meng K K, Zhang T Z, Liu J J, Chen J K, Wu Y, Xu X G and Jiang Y 2022 Appl. Phys. Lett. 121 142403
[37] Xia T R, Yang X T, Zhang Y F, Liu X Q, Cai X Y, Liu C, Yao Q, Kou X F and Wang W B 2024 Chin. Phys. B 33 087504
[38] Ding S L, Liang Z Y, Yun C, Wu R, Xue M Z, Lin Z C, Ross A, Becker S, Yang W Y, Ma X B, Chen D F, Sun K, Jakob G, Klaui M and Yang J B 2021 Phys. Rev. B 104 224410
[39] Shao Q M, Grutter A, Liu Y W, Yu G Q, Yang C Y, Gilbert D A, Arenholz E, Shafer P, Che X Y, Tang C, Aldosary M, Navabi A, He Q L, Kirby B J, Shi J and Wang K L 2019 Phys. Rev. B 99 104401
[40] Jin Q, Yang M, Song G Z, Zhao N, Chen S R, Hong H T, Cui T, Rong D K, Wang Q Y, Fan Y Y, Ge C, Wang C, Bi J C, Cao Y W, Wu L S, Wang S M, Jin K J, Cheng Z G and Guo E J 2024 Chin. Phys. Lett. 41 027402
[41] Bai Y, Wang Z, Lei N, Muhammad W, Xiang L F, Li Q, Lai H L, Zhu Y Y, Wang W B, Guo H W, Yin L F, Wu R Q and Shen J 2022 Chin. Phys. Lett. 39 108501
[42] Dong X J and Zhang C W 2024 Chin. Phys. B 33 077303
[43] Althammer M, Meyer S, Nakayama H, et al. 2013 Phys. Rev. B 87 224401
[44] Liang X, Zhu Y P, Peng B, Deng L J, Xie J L, Lu H P, Wu M Z and Bi L 2016 ACS Appl. Mater. Interfaces 8 8175
[45] Hahn C, de Loubens G, Klein O, Viret M, Naletov V V and Ben Youssef J 2013 Phys. Rev. B 87 174417
[46] Sagasta E, Omori Y, Isasa M, Gradhand M, Hueso L E, Niimi Y, Otani Y and Casanova F 2016 Phys. Rev. B 94 060412
[1] Doping dependence of resistivity, upper critical field and its anisotropy in overdoped Ba1-xKxFe2As2 (x = 0.6-1) single crystals
Ke Shi(史可), Wenshan Hong(洪文山), Yang Li(李阳), Minjie Zhang(张敏杰), Yongqi Han(韩永琦), Yu Zhao(赵宇), Jiating Wu(吴嘉挺), Ze Wang(王泽), Langsheng Ling(凌浪生), Chuanying Xi(郗传英), Li Pi(皮雳), Huiqian Luo(罗会仟), and Zhaosheng Wang(王钊胜). Chin. Phys. B, 2026, 35(1): 017401.
[2] Extremely large magnetoresistance in single-crystalline ZrBi2
Cundong Li(李存东), Binbin Ruan(阮彬彬), Qingxin Dong(董庆新), Jianli Bai(白建利), Libo Zhang(张黎博), Qiaoyu Liu(刘乔宇), Jingwen Cheng(程靖雯), Pinyu Liu(刘品宇), Yu Huang(黄宇), Yingrui Sun(孙英睿), Zhian Ren(任治安), and Genfu Chen(陈根富). Chin. Phys. B, 2025, 34(9): 097307.
[3] Tunable colossal negative magnetoresistance of topological semimetal EuB6 thin sheets
Ke Zhu(祝轲), Qi Qi(齐琦), Yaofeng Xie(谢耀锋), Lulu Pan(潘禄禄), Senhao Lv(吕森浩), Guojing Hu(胡国静), Zhen Zhao(赵振), Guoyu Xian(冼国裕), Yechao Han(韩烨超), Lihong Bao(鲍丽宏), Ying Zhang(张颖), Xiao Lin(林晓), Hui Guo(郭辉), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(9): 097308.
[4] Multiple anomalous Hall effect in kagome metal TbV5MnSn6
Zi-Cheng Tao(陶咨成), Yi-Xuan Luo(罗伊轩), Shi-Hao Zhang(张世豪), and Yan-Feng Guo(郭艳峰). Chin. Phys. B, 2025, 34(8): 087103.
[5] Observation of distinct Kondo effect and anomalous Hall effect in V self-intercalated layered antiferromagnet V5S8 crystals
Yaofeng Xie(谢耀锋), Senhao Lv(吕森浩), Qi Qi(齐琦), Guojing Hu(胡国静), Ke Zhu(祝轲), Zhen Zhao(赵振), Guoyu Xian(冼国裕), Yechao Han(韩烨超), Ruwen Wang(王汝文), Chenyu Bai(白晨宇), Lihong Bao(鲍丽宏), Xiao Lin(林晓), Hui Guo(郭辉), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(8): 087303.
[6] Modulation of exchange bias in Py/IrMn films by surface acoustic waves
Jie Dong(董洁), Shuai Mi(米帅), Meihong Liu(刘美宏), Huiliang Wu(吴辉亮), Jinxuan Shi(石金暄), Huifang Qiao(乔慧芳), Qian Zhao(赵乾), Teng-Fei Zhang(张腾飞), Chenbo Zhao(赵晨博), Jianbo Wang(王建波), and Qingfang Liu(刘青芳). Chin. Phys. B, 2025, 34(8): 088502.
[7] Magnetotransport properties of two-dimensional tellurium at high pressure
Huiyuan Guo(郭慧圆), Jialiang Jiang(姜家梁), Boyu Zou(邹博宇), Jie Cui(崔杰), Qinglin Wang(王庆林), Haiwa Zhang(张海娃), Guangyu Wang(王光宇), Guozhao Zhang(张国召), Kai Wang(王凯), Yinwei Li(李印威), and Cailong Liu(刘才龙). Chin. Phys. B, 2025, 34(8): 087301.
[8] In-plane negative magnetoresistance and quantum oscillations in van der Waals antiferromagnet DyTe3
Qi Qi(齐琦), Senhao Lv(吕森浩), Ke Zhu(祝轲), Yaofeng Xie(谢耀锋), Guojing Hu(胡国静), Zhen Zhao(赵振), Guoyu Xian(冼国裕), Yechao Han(韩烨超), Yang Yang(杨洋), Lihong Bao(鲍丽宏), Xiao Lin(林晓), Hui Guo(郭辉), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(7): 077305.
[9] Magnetotransport properties of large-scale PtTe2 Dirac semimetal films grown by pulsed laser deposition
Zhongqiang Chen(陈中强), Zhe Wang(王喆), Kankan Xu(徐侃侃), Xu Zhang(张旭), Ruijie Xu(徐睿劼), and Xuefeng Wang(王学锋). Chin. Phys. B, 2025, 34(7): 077401.
[10] Current density in anomalous Hall effect regime under weak scattering
Ning Dai(戴凝) and Bin Zhou(周斌). Chin. Phys. B, 2025, 34(7): 077301.
[11] Quantum anomalous Hall effect in twisted bilayer graphene
Wen-Xiao Wang(王文晓), Yi-Wen Liu(刘亦文), and Lin He(何林). Chin. Phys. B, 2025, 34(4): 047301.
[12] Anomalous Hall effect in Bernal tetralayer graphene enhanced by spin-orbit interaction
Zhuangzhuang Qu(曲壮壮), Zhihao Chen(陈志豪), Xiangyan Han(韩香岩), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Wenjun Zhao(赵文俊), Kenji Watanabe, Takashi Taniguchi, Zhi-Gang Cheng(程智刚), Zizhao Gan(甘子钊), and Jianming Lu(路建明). Chin. Phys. B, 2025, 34(3): 037201.
[13] Tunable anomalous Hall effect and anisotropic magnetism in In-doped TbMn6Sn6 kagome magnets
Detong Wu(吴德桐), Jianwei Qin(秦建伟), and Bing Shen(沈冰). Chin. Phys. B, 2025, 34(10): 107511.
[14] Chemical pressure manipulation of ferromagnetism in magnetic semiconductor Ba(Zn,Mn,Cu)2As2
Xueqin Zhao(赵雪芹), Jinou Dong(董金瓯), Lingfeng Xie(谢玲凤), Xun Pan(潘洵), Haoyuan Tang(唐浩原), Zhicheng Xu(徐之程), and Fanlong Ning(宁凡龙). Chin. Phys. B, 2025, 34(10): 107510.
[15] Evolution of anomalous Hall effect in ferromagnetic Weyl semimetal NbxZr1-xCo2Sn
Bo-Wen Chen(陈博文) and Bing Shen(沈冰). Chin. Phys. B, 2024, 33(8): 087501.
No Suggested Reading articles found!